Untargeted metabolomics provides a hypothesis generating snapshot of a metabolic profile. This protocol will demonstrate the extraction and analysis of metabolites from cells, serum, or tissue. A range of metabolites are surveyed using liquid-liquid phase extraction, microflow ultraperformance liquid chromatography/high-resolution mass spectrometry (UPLC-HRMS) coupled to differential analysis software.
Here we present a workflow to analyze the metabolic profiles for biological samples of interest including; cells, serum, or tissue. The sample is first separated into polar and non-polar fractions by a liquid-liquid phase extraction, and partially purified to facilitate downstream analysis. Both aqueous (polar metabolites) and organic (non-polar metabolites) phases of the initial extraction are processed to survey a broad range of metabolites. Metabolites are separated by different liquid chromatography methods based upon their partition properties. In this method, we present microflow ultra-performance (UP)LC methods, but the protocol is scalable to higher flows and lower pressures. Introduction into the mass spectrometer can be through either general or compound optimized source conditions. Detection of a broad range of ions is carried out in full scan mode in both positive and negative mode over a broad m/z range using high resolution on a recently calibrated instrument. Label-free differential analysis is carried out on bioinformatics platforms. Applications of this approach include metabolic pathway screening, biomarker discovery, and drug development.
Due to recent technological advances in the field of HRMS, untargeted, hypothesis-generating metabolomics approaches have become a feasible approach to analysis of complex samples.1 Mass spectrometers capable of 100,000 resolution facilitating routine low part per million (ppm) mass accuracy have become widely available from multiple vendors.2,3 This mass accuracy allows greater specificity and confidence in a preliminary assignment of analyte identity, isotopic pattern recognition, and adduct identification.4 When coupled with an appropriate extraction procedure and high-performance LC or UPLC, complex mixtures can be analyzed with additional specificity derived from retention time data.5 UPLC possesses greater chromatographic efficiency and allows greater sensitivity, resolution and analysis time making a greater coverage of the metabolome possible.6 The resulting large datasets can be integrated into any of multiple differential analysis software and mined for useful patterns or individual analytes of interest.7,8,9,10,11 Putative hits can be initially identified using a combination of peak detection algorithms, accurate mass based chemical formula prediction, fragmentation prediction, and chemical database searching. This approach allows prioritization of targets for time-consuming complete structural identification or for development of more sensitive and more specific stable isotope dilution UPLC/selected or multiple reaction monitoring/MS studies that are the current gold standard methods for quantification.12
The varying nature of biological samples has led to optimization of extraction protocols for urine13, cells14, serum15, or tissue16. This protocol features extractions for cells, serum, and tissue. Where appropriate, comments and additional references have been included for modifications of the procedure to address inclusion of stable isotopes, or for inclusion of especially unstable metabolites.
1. Sample Extraction from Cells
2. Sample Extraction from Serum
3. Sample Extraction from Tissue
4. Re-suspension and Filtration of Samples for UPLC
5. UPLC Setup
6. Mass Spectrometer Setup
7. Differential Analysis
The results presented show selected data from a 6-hr treatment of SH-SY5Y glioblastoma cells with the pesticide and mitochondrial complex I inhibitor rotenone. For brevity, only the organic phase positive mode data is presented. The samples were processed and analyzed as described above (Figure 1, Table 1, Table 2) and loaded onto two differential analysis platforms for label-free quantification, SIEVE and XCMS online. Although a large number of hits (Figure 2, Figure 3) are identified by the two programs used for differential analysis these features include likely artifacts, poorly integrated peaks, and other features of questionable analytical value. This can be judged by screening the hits for appropriate signal intensity, low variation between samples of the same group, background levels, and good chromatographic peak shapes (Figure 3).
To demonstrate the downstream confirmation of initial hits, we isolate a feature with a mass corresponding to our treatment compound rotenone within 3 ppm (Figure 3, Figure 4). We confirm the identity of this analyte with UPLC-HR/tandem mass spectrometry (MS/MS) of our sample and the pure compound (Figure 5). We also identify a differentially abundant feature reduced in the rotenone treated group, tentatively identified as D-pantethine by accurate mass database searching (Figure 3).
Figure 1. General Experimental Outline for Sample Preparation and Analysis by Microspray UPLC-HRMS. A general outline of sample preparation, including the optional introduction of internal standards and protein or lipid/protein content analysis. Phase separation, liquid chromatography, and analysis by different ion modes in the mass spectrometer are outlined.
Table 1. UPLC Conditions. General and compound optimized UPLC conditions. For organic phase 1, constant flow rate of 1.8 μl/min through a Waters nanoACQUITY C18 BEH130 column kept in a heater at 35 °C was used. Solvent A: 99.5% water/0.5% acetonitrile with 0.1% formic acid, Solvent B: 98% acetonitrile/2% water with 0.1% formic acid For organic phase 2, constant flow rate of 3.4 μl/min through an Acentis Express C8 column kept in a heater at 35 °C was used. Solvent A: 40% water/20% acetonitrile with 0.1% formic acid and 10 mM ammonium formate, Solvent B: 90% isopropanol/10% acetonitrile with 0.1% formic acid and 10 mM ammonium formate For the aqueous phase, constant flow rate of 1.2 μl/min through a Waters nanoACQUITY C18 BEH130 column kept in a heater at 35 °C was used. Solvent A: 95% water/5% methanol with 0.1% ammonium hydroxide, Solvent B: 95% methanol/5% water with 0.1% ammonium hydroxide.
Figure 2. Mirror Plot Generated with XCMS. A mirror plot showing differentially abundant features as detected and quantified through XCMS online from the organic phase positive mode UPLC-MS analysis. Each dot represents a distinct “feature.” Green dots are features more abundant (larger integrated area) in the control, whereas red dots are more abundant in the treatment. Increasing size of the dot indicates increasing magnitude of fold change between the groups, and the intensity of color indicates a decreasing p-value with increasing saturation of color.
Figure 3. Analyte Peaks. Chromatograms showing the organic phase positive ion mode UPLC-MS analysis. A) Corrected (aligned) Total ion current (TIC) from SIEVE 2.0. B) Extracted Ion Chromatogram for the feature tentatively identified as D-pantethine through XCMS. C) Extracted Ion Chromatogram for the feature later identified as rotenone from SIEVE. D) XIC for the feature later identified as rotenone from SIEVE normalized to TIC. Click here to view larger figure.
Figure 4. Database Search Results. Database hits for A) Human Metabolome Database (http://www.hmdb.ca) and B) ChemSpider/KEGG (via SIEVE) (ChemSpider alone can also be employed – http://www.chemspider.com) using accurate mass determinations for the features shown in Figures 3B, 3C, and 3D corresponding to the ions of m/z 555.2516 and 395.1481 based on the identification of these ions as [MH]+ species. Click here to view larger figure.
Figure 5. HR/MS/MS Structural Confirmation. Confirmation of identification of the feature corresponding to the ion at 395.1481 m/z with a retention time of 23.22 min as rotenone based on UPLC-MS/MS comparison to a commercial standard with A) similar retention time and B) the same m/z (395.1481, ~0 ppm error) with nearly identical fragmentation. Click here to view larger figure.
Mass Spectrometry Parameter | Setting | Comment |
Source | ESI | Michrom CaptiveSpray |
Ion Model | Positive or Negative | |
Method Length | Variable (~40-60 min) | |
Resolution | 60,000-100,000 | |
Spray (kV) | 1.75 | |
Tube Lens (V) | 130 | Target Compound Dependent |
Capillary Temperature (°C) | 250 | May shorten life of spray tip |
Capillary Voltage (V) | 50 | Target Compound Dependent |
Data Type | Centroid | (for Profile data, see Discussion) |
Table 2. MS Settings. General and compound optimized mass spectrometer settings used for the LTQ XL-Orbitrap with a Michrom Thermo Advance captive spray ESI source.
Untargeted metabolomics offers a powerful tool for investigating endogenous or xenobiotic biotransformations, or capturing a metabolic profile from a sample of interest. The output of the technique scales with the resolution and sensitivity of the technology used to separate and analyze the sample, the ability to deal with the large datasets generated, and the ability to mine the dataset for useful information (e.g. accurate mass database searching). Recently, this has been facilitated by advances in high resolution mass spectrometers, and high- or ultra-performance liquid chromatography. Differential analysis software has addressed the analysis bottleneck, and can accomplish peak detection adjustment for retention time shifts, filtering, and statistical analysis with high-throughput.20,21,22 Selection of the proper informatics pipeline should include considerations as to data centroiding algorithms, peak detection, peak integration, alignment, ability to integrate MS/MS data, and ability to deal with isotopes or adducts.23 Selection of appropriate cheminformatics databases should also be considered.24,25,26,27 The current inadequacy of any particular database to comprehensively identify compounds and integrate accurate mass data, MS/MS data, or LC data remains a major problem in the field.
The workflow presented here integrates liquid-liquid extraction, micro-flow liquid chromatography, and high resolution mass spectrometry with two different differential analysis software platforms demonstrated in a cell culture treatment model. Additionally, extraction protocols are listed for serum and tissue, as these may serve as useful samples for similar analysis.
Although any method used for untargeted metabolomics should be optimized for repeatability, stable UPLC conditions, and source stability, some variation is inevitable. Both SIEVE and XCMS allow correction for retention time shift, but special attention should be paid to ensure that the parameters set in the experiment are adequate to correct variation. Also, stable isotope labeled internal standard(s) can be easily integrated into this procedure to reduce artifacts and inter-sample variation caused by differences in sample extractions or LC-MS analysis.12 As with all sensitive LC-MS methodology, it is crucial to use high purity reagents, and ensure that the sample preparation removes undesirable particulate matter or aggregate. Artifacts can be generated by the normal variation in contaminants, and it may be desirable to confirm that putative hits are not in fact ubiquitous contaminants of the extraction or analysis process.
Lastly, although the method is labeled as “untargeted” or “unbiased” metabolomics, this is a partial misnomer. The nature of the extraction, separation, and analysis will favor metabolites with certain characteristics including stability during extraction, interaction with stationary and mobile phases during separation, and ionization at the source of the mass spectrometer.28,29,30 Depending on the available instrumentation, this procedure can be adapted to different extractions, flow rates, LC pressures, ion sources, or mass spectrometers. Therefore, we have included notes in the procedure where certain conditions can be optimized based on general knowledge or internal standards representative of a class of molecules of interest.
The authors have nothing to disclose.
We acknowledge support of NIH grants P30ES013508 and 5T32GM008076. We also thank Thermo Scientific for access to SIEVE 2.0 and Drs. Eugene Ciccimaro and Mark Sanders of Thermo Scientific for useful discussions.
Reagent | |||
Phosphate Buffered Saline | Mediatech | 21-031-CM | |
Water (H2O) | Fisher Scientific | W7-4 | (optima) |
Acetonitrile (CH3CN) | Fisher Scientific | A996-4 | (optima) |
Methanol (CH3OH) | Fisher Scientific | A454-4 | (optima) |
Isopropanol | Fisher Scientific | A464-4 | (optima) |
Chloroform (CH3Cl) | Sigma-Aldrich | 366927 | Hazard |
Dichloromethane (CH2Cl2) | Acros Organics | 61030-1000 | To replace chloroform |
Diethyl Ether | Sigma-Aldrich | 346136 | To replace chloroform |
Formic Acid (FA) | Fisher Scientific | (optima) | |
NH4OH | Fisher Scientific | A470-250 | (optima) |
Ammonium formate (HCOONH4) | Sigma-Aldrich | 78314 | |
MicroSpin C18 Columns | Nest Group Inc | SS18V | |
Pasteur Pipettes | Fisher Scientific | 13-678-200 | |
10 ml Glass Centrifuge Tubes | Kimble Chase | 73785-10 | |
10 ml Plastic Centrifuge Tubes | CellTreat | CLS-4301-015 | |
LC Vials (glass) | Waters | 60000751CV | |
LC Inserts (glass) | Waters | WAT094171 | |
LC Vials (plastic) | Waters | 186002640 | |
0.22 μm Filters | Corning | 8169 | nylon |
2 ml Eppendorf Tubes | BioExpress | C-3229-1 | Low Retention |
Equipment | |||
High Resolution Mass Spectrometer | Thermo Scientific | LTQ XL-Orbitrap | |
HPLC/UPLC | Waters | nanoACQUITY UPLC | |
Source | Michrom | Thermo Advance Source | |
Differential Analysis Software | Thermo Scientific | SIEVE 2.0 | |
nanoACQUITY C18 BEH130 | Waters | 186003546 | 1.7 μm particle size, 150 mm x 100 μm |
Acentis Express C8 | Sigma-Aldrich | 54262 | 2.7 μm particle size, 15 cm x 200 μm |