This protocol describes an experimental procedure for performing Fluorescence in situ Hybridization (FISH) for counting mRNAs in single cells at single-molecule resolution.
The Fluorescence in situ Hybridization (FISH) method allows one to detect nucleic acids in the native cellular environment. Here we provide a protocol for using FISH to quantify the number of mRNAs in single yeast cells. Cells can be grown in any condition of interest and then fixed and made permeable. Subsequently, multiple single-stranded deoxyoligonucleotides conjugated to fluorescent dyes are used to label and visualize mRNAs. Diffraction-limited fluorescence from single mRNA molecules is quantified using a spot-detection algorithm to identify and count the number of mRNAs per cell. While the more standard quantification methods of northern blots, RT-PCR and gene expression microarrays provide information on average mRNAs in the bulk population, FISH facilitates both the counting and localization of these mRNAs in single cells at single-molecule resolution.
Using bulk measurement techniques, it is not possible to assay the number of transcripts or transcriptional activity within single cells1. Using fluorescent proteins driven by promoters of interest as reporters of gene expression can address this issue to some extent, but the time required for fluorescent proteins to fold obscures early dynamics. Long-lived fluorescent proteins also cannot report mRNA lifetimes. The FISH method can be used to assay mRNA during its complete life cycle, from transcription initiation in the nucleus to subsequent maturation and decay in single cells, with single-molecule resolution.
The original in situ experiments for visualizing nucleic acids used radiolabeled RNA probes to probe DNA elements. These included visualizing ribosomal DNA in ovaries of the frog Xenopus laevis 2 and satellite DNA in mouse tissue3. The first fluorescent in situ experiment used an RNA molecule marked with a fluorophore to probe particular DNA sequences4. The first application of fluorescent probes for visualizing RNA in situ was the visualization of actin gene expression in chicken muscle tissue culture5. More recently, in budding yeast, FISH has been used to investigate oscillations in transcription during the yeast metabolic cycle6, the decay of mRNAs during cell cycle progression7, and spatial localization of mRNA transcripts during mitosis8. FISH has been used in yeast to show that uncorrelated fluctuations in constitutively transcribed genes, which constitute more than half of all yeast genes, arise from uncorrelated transcription initiation9. In non-yeast species, FISH has been used to identify stem-cell markers in the mouse intestine10 and to determine that incomplete penetrance of cell fates can result from stochastic gene expression fluctuations in C. elegans embryos11.
The FISH method described here works by hybridizing dye-labeled, single-stranded DNA probes to mRNA messages. Cells are imaged and mRNAs are counted using a spot-detecting algorithm. Single-stranded probes can be generated with a DNA synthesizer and then labeled (referred to here as Singer probes) or ordered commercially as pre-labeled probes (Stellaris probes)12,13. A major difference between the Singer and Stellaris probes is that the Singer probes are longer (~50 bp) and are multi-labeled while the Stellaris probes are short (~20 bp) with only one label per probe, as described by Raj et al 14. Additionally, the Stellaris approach uses many more probes per gene than that of Singer (~30 versus 5 probes per gene, respectively). Below we provide a protocol that describes the use of either type of probe. In section 2, we provide a protocol for labeling amino-allyl thymidine-containing probes with a chosen Cy dye. An overview of the computational steps required to identify single mRNA spots is provided in Section 7.
Figures 1 and 2 are schematics of the FISH experimental procedures and image analysis pipeline used for quantifying FISH images.
1. Solutions to Prepare
*The solutions below are for use with Singer probes. If using Stellaris probes, replace “40% formamide” with “10% formamide” in both Hybridization Buffer and Wash Buffer. Additional changes to Hybridization Buffer when using Stellaris probes are (1) add 1 g Dextran Sulfate and (2) do not include 10 mg ssDNA.
Buffer B
8 ml 1 M KH2PO4
41.5 ml 1M K2HPO4
109.3 g Sorbitol
Spheroplasting Buffer
890 μl Buffer B
100 μl VRC
10 μl 25,000 U/ml Lyticase
2 μl β-mercaptoethanol
Hybridization Buffer (10 ml, final volume)
10 mg E. coli tRNA
10 mg ssDNA*
100 μl 200 mM VRC stock
40 μl of 50 mg/ml BSA
1 ml 20X SSC
4 ml 40% Formamide*
Nuclease Free Water (to 10 ml final volume)
1 g Dextran Sulfate*
*Hybridization Buffer may be kept in 0.5 ml aliquots at -20 °C for convenience.
Wash Buffer (50 ml, final volume)
5 ml 20X SSC
20 ml 40% Formamide*
Nuclease Free Water (to 50 ml final volume)
Labeling Buffer
1.06 g Sodium Carbonate
100 ml DEPC Water
pH 9
2. Probe-labeling (Singer Probes Only)
We obtain these probes by in-house synthesis using an ABI oligonucleotide synthesis apparatus. Typically, 4-5 ~50 bp oligonucleotides are synthesized that are homologous to the gene of interest, substituting amino-allyl thymidine for several thymidines spaced at least 8, preferably 10+ bp apart. Because of their sensitivity to ozone, we work in an ozone-free facility when using CY dyes.
3. Coverslip Preparation
4. Fixation Procedure
5. Hybridization Procedure
Be sure to warm the hybridization solution to room temperature before opening it.
For Stellaris probes, it is recommended to start 4 separate hybridization reactions by adding 1 μl each of 1:10, 1:20, 1:50 and 1:100 working dilutions of probes to see which one is optimal. Working dilutions of Stellaris probes are prepared in Hybridization buffer.
Note: the following procedure is for applying/imaging cells on coverslips. For washing/imaging cells in 96-well plates, including alternative reactive oxygen species scavenger solution see http://www.biosearchtech.com/stellarisprotocols.
6. Imaging of Cells with Olympus IX-81 Inverted Microscope Overview
7. Image Analysis Overview (Singer Probes)
Below we provide an outline of computational methods we use for analyzing FISH images in MATLAB. The relevant MATLAB functions used are bracketed on the right. The algorithms and thresholds are currently tuned for data from Singer style probes. Using Stellaris style probes will require some adjustment, particularly to the final filtering step (7.8).
Cell Identification15
Find spots in each fluorescence channel
Measure spot intensity and filter single vs. multiple probe signals
Figure 3 shows typical histograms computed from FISH images and used to determine the number of mRNAs present in single cells. An important advantage of microscopy-based RNA quantification is that one can obtain information on the localization of transcripts. For example, we used FISH to identify mRNAs in single cells with an inducible CBF1 allele (Figure 4). Because many mRNA molecules are present at the site of transcription, we are able to identify the presence and location of transcription sites within the nucleus.
By utilizing different dyes to label mRNAs of different genes, one can quantify multiple mRNA species in the same cells. To demonstrate this, yeast cells were incubated in the presence of α-factor and sorbitol. FUS1 transcription (Quasar670 dye, red) is induced by α-factor. STL1 transcription (Quasar 570 dye, green) is induced by increases in extracellular osmolarity (Figure 5). Figure 4 is an example of FISH with the Singer probes. Figure 5 is an example of FISH with the Stellaris probes.
Figure 1. Schematic of FISH experimental procedure. Click here to view larger figure.
Figure 2. Schematic of image analysis pipeline. The final spots are determined in the rightmost figure.
Figure 3. Histogram of spot intensities for a particular gene using Singer probes. Probe intensities are computed both inside (red) and outside (blue) cells. Low intensity spots are either noise or single probes. Real mRNA messages are labeled with multiple probes. When using Stellaris probes, single probes are less detectable and thus the thresholds and filtering must be adjusted accordingly.
Figure 4. Representative results of Singer FISH procedure. In this experiment, CBF1 transcription is activated with an inducible promoter18. Nuclei are stained blue with DAPI. CBF1 mRNAs are tagged with Cy3-labeled probes. White arrows highlight the presence of CBF1 transcription sites in the nucleus. Single mRNA transcripts are visible in the cytoplasm.
Figure 5. Representative results of Stellaris FISH procedure. MATa yeast cells were simultaneously exposed to 30 ng/ml α-factor and 0.75 M sorbitol for 10 min and were simultaneously probed for FUS1 (Quasar 670, red) and STL1 (Quasar 570, green) transcripts. In the highlighted box, we can see one cell responding only to the pheromone (FUS1 start site, red) and another predominantly responding to sorbitol (STL1 start site, green).
To date, FISH has primarily been a low-throughput method. The use of Cy3, Cy3.5, and Cy5 dyes limits the number of genes one can investigate in single cells to three at a time. Some additional probes have been developed (Stellaris) but the number of distinguishable probes is still at most seven. To circumvent this limitation, combinatorial labeling strategies using multiple fluorophores have been used to create barcodes for different mRNA species19,20. Most recently, Lubeck and Cai used optical and spectral barcoding to quantify 32 different species simultaneously with FISH in single yeast cells19. One limitation of this recent combinatorial approach is it requires the use of super-resolution microscopy. The analysis needed to distinguish the barcoded probes is also quite complex.
We have found that Cy3 and Cy3.5 are preferable to Cy5 for FISH experiments. One of the limitations of the Cy5 dye is its sensitivity to photobleaching. However, Stellaris has recently developed Cy5 variants that are advertised as more resistant to photobleaching, and may alleviate this technical issue. It also worth noting that FISH is an expensive method to implement and that both Singer and Stellaris probes typically cost $700 – $1,000 per probe set, although prices for commercially available probes should decrease in the future. Sparing of reagents and efficient labeling brings Singer probes down to the lower range in price.
One of the major technical challenges is the separation of single versus multiple probe spots, which requires the implementation of sophisticated spot-determining algorithms. This can take extensive manual review to tune image analysis parameters for specific experimental setups. An outline of our computational pipeline with relevant MATLAB functions is provided in Section 7 of the protocol. This issue is somewhat alleviated by the Stellaris probes which have only one label per probe. It therefore requires the colocalization of multiple probes to see a signal.
Because FISH necessitates fixing cells, it does not facilitate tracking individual cells over time. Previously, we used FISH snapshot data to reconstruct the dynamics of gene expression in individual metabolically cycling yeast populations6. Metabolic cycling is observed in pre-starved, continuous cultures, and is characterized by population-wide collective oscillations in oxygen consumption. These oscillations are associated with genome-wide oscillations of transcripts that occur for half of all yeast genes at different phases of oxygen consumption. We sought to determine if metabolic cycling was present in unsynchronized continuous yeast cultures. If present, transcripts that are anti-correlated in synchronous populations should also be anti-correlated in unsynchronized single cells, and vice versa for correlated transcripts.
To reconstruct dynamics of mRNA production in time, the observed snapshot data must be compared to what is expected from a model of the underlying behavior. There are theoretical limitations to when such “snapshots” of gene expression data can be used to determine the underlying gene expression dynamics and which kinds of models can be distinguished21. For the metabolic cycle data, rather than directly showing the presence of temporal oscillations, statistical measurements were implemented to substantiate that there is indeed a cell autonomous oscillatory program consistent with bulk microarray measurements.
The authors have nothing to disclose.
This research was supported by grants GM046406 (to D.B.) and by the National Institute of General Medical Sciences Center for Quantitative Biology (GM071508). R.S.M. acknowledges funding from the NSF Graduate Research Fellowship. M.N.M. is supported by a Lewis-Sigler Fellowship. We would like to acknowledge members of the Botstein lab for helpful discussions and the former members Allegra Petti and Nikolai Slavov for their contributions to the metabolic cycle project. We thank Daniel Zenklusen and Robert Singer for getting us started with the FISH method.
Name of the Reagent | Company | Catalogue Number | Comments |
Vanadyl Ribonucleoside Complex | NEB | S1402S | |
Lyticase | Sigma | L5263 | |
E. coli tRNA | Roche | 1010954001 | |
BSA (RNase free) | Ambion | ||
Beta-mercaptoethanol | Fisher | 03446l | |
DAPI, dilactate | Sigma | D9564 | |
PBS 10X (RNase free) | Ambion | AM9624 | |
Triton X-100 | Shelton Scientific | ||
Dextran sulfate | Sigma | D6001 | Or equivalent |
Saline-sodium citrate (SSC) 20X | VWR | 82021-484 | |
Formamide (deionized) | Ambion | AM9342 | |
Nuclease-free water | Ambion | AM9932 | |
Alpha-D-glucose | Sigma | 158968 | For GLOX solution |
1 M Tris-HCl, pH 8.0 | Ambion | AM9855G | |
100% Ethanol | |||
Glucose oxidase | Sigma | G0543 | For GLOX solution |
Catalase | Sigma | C3155 | For GLOX solution |
Concanavalin A | MP Biomedicals | 150710 | |
Polylysine (0.01%) | Sigma | P8920 | |
Coverslips | Warner Instruments | Cs-18R15 | |
Prolong Gold Mounting Medium | Invitrogen | P36934 | |
QIAquick Nucleotide Removal Kit | QIAGEN | 28304 | |
FISH Probes | Biosearch Technologies | Custom order for your desired mRNA sequence | |
Glass bottom 96-well plates | Nunc | 265300 | Alternative to coverslips |
12-well plates | BD Falcon | 351143 | |
Cy3, Cy3.5, Cy5 dyes | GE Healthcare | monofunctional NHS-ester | |
EQUIPMENT | |||
Plasma-Preen I Cleaner | Terra Universal | 9505-00 | Controller (Cat #9505-17 optional) |
Vacuum Pump | Alcatel | 205SDMLAM | For operating Plasma-Preen |
Widefield Fluorescence Microscope | Olympus | IX81 | Or equivalent |
100X objective | Olympus | 1-UB617R | |
Light Source | X-Cite | XCT 10-A | Or equivalent |
Filter Sets | Chroma | U-NSP100V2-SPR, U-NSP101V2-SPR, U-NSP102V2-SPR, U-NSP103V2-SPR,U-NSP104V2-SPR. | |
Cooled CCD or EMCCD Camera | Hamamatsu | C4742-98-24ER |