In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO). Here, an acute tissue slice preparation of VNO for performing calcium imaging is described. This physiological approach allows observations of subpopulations and/or individual neurons in a living tissue and is convenient for receptor-ligand identification.
Peter Karlson and Martin Lüscher used the term pheromone for the first time in 19591 to describe chemicals used for intra-species communication. Pheromones are volatile or non-volatile short-lived molecules2 secreted and/or contained in biological fluids3,4, such as urine, a liquid known to be a main source of pheromones3. Pheromonal communication is implicated in a variety of key animal modalities such as kin interactions5,6, hierarchical organisations3 and sexual interactions7,8 and are consequently directly correlated with the survival of a given species9,10,11. In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO)10,12, a paired structure located at the base of the nasal cavity, and enclosed in a cartilaginous capsule. Each VNO has a tubular shape with a lumen13,14 allowing the contact with the external chemical world. The sensory neuroepithelium is principally composed of vomeronasal bipolar sensory neurons (VSNs)15. Each VSN extends a single dendrite to the lumen ending in a large dendritic knob bearing up to 100 microvilli implicated in chemical detection16. Numerous subpopulations of VSNs are present. They are differentiated by the chemoreceptor they express and thus possibly by the ligand(s) they recognize17,18. Two main vomeronasal receptor families, V1Rs and V2Rs19,20,21,22, are composed respectively by 24023 and 12024 members and are expressed in separate layers of the neuroepithelium. Olfactory receptors (ORs)25 and formyl peptide receptors (FPRs)26,27 are also expressed in VSNs.
Whether or not these neuronal subpopulations use the same downstream signalling pathway for sensing pheromones is unknown. Despite a major role played by a calcium-permeable channel (TRPC2) present in the microvilli of mature neurons28 TRPC2 independent transduction channels have been suggested6,29. Due to the high number of neuronal subpopulations and the peculiar morphology of the organ, pharmacological and physiological investigations of the signalling elements present in the VNO are complex.
Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line30, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.
1. Dissection of the mouse VNO
2. VNO tissue slice preparation
The VNO tissue slice preparation described in this section 2) is mainly for calcium imaging investigations. VNO slices can also be used for immunohistostainings on floating slices to verify the structural integrity of the tissue (please see section 3) of the protocol).
3. Immunohistochemistry on VNO floating slices
The goal of this procedure is to verify the integrity of the VNO tissue slices obtained in section 2). Acetylated-tubulin is a microtubule / cytoskeleton marker expressed in dendrites and microvilli of VNO sensory neurons. For calcium imaging experiments, go directly to section 4) of the protocol. The immunohistostaining method on floating VNO slices can be adapted to the evaluation of the expression of any protein of interest. For this purpose, we recommend that you fix the VNO for 1h at 4°C in a fixative solution (paraformaldehyde 4% in PBS, pH 7.6) after the point 1.7) of the protocol and use from this point PBS at pH 7.6 rather than ACSF solution.
4. Calcium imaging on VNO slices
5. Representative Results:
To establish a functional assay to investigate the multi transduction pathways taking place in the mouse VNO, or to identify new pheromone-receptor pairs, we take advantage of the VG mouse line (Fig. 1A). In this line, one out of 240 V1Rs receptors, the V1Rb2 receptor is GFP-tagged allowing the easy visualization of a particular subpopulation of vomeronasal sensory neurons. After extraction and dissection of the VNO (Fig. 1E), we prepare acute VNO slices (Fig. 2C). We fix a fraction of them, in order to check and validate the tissular integrity of the preparation by performing immunohistostainings against the acetylated-tubulin protein (Fig. 2D-F). The other fraction of the slices is used for calcium imaging experiments. For that, slices are loaded with Fura-2AM (Fig. 3C-E) and the intracellular calcium level of each neuron is monitored as a ΔF ratio (Fig. 3F). Viability of the neurons is evaluated by perfusion of ATP (125 μM), after which rapid and transient increase of the ΔF ratio is expected (Fig. 3F). Urine being a major source of pheromones, perfusion of freshly collected mouse urine (1:100) is used as an endogenous control. It triggers calcium transients in approximately 50% of the recorded neurons (cell 1 and 2, Fig. 3F). Under GFP illumination, V1Rb2 positive neurons are observable, and perfusion of its known pheromonal ligand, 2-heptanone, initiates cellular activation (cell 1, Fig. 3I). Interestingly, neuronal activations are also observable in a fraction of neurons that do not express the V1Rb2 receptor (GFP negative neurons) (cell 2, Fig. 3I), demonstrating the complexity of pheromone coding in the VNO.
Figure 1. Dissection of the mouse vomeronasal organ. (A) A mouse from the VG line. (B) After euthanasia of the mouse, the full head is placed under a binocular microscope and the lower jaw is removed in order to visualize the palate. A small horizontal incision is done (black dashed line). (C) After the removal of the palate, the nasal septum lined with the VNO is cut in the upper and the lower part (white dashed lines) to facilitate VNO extraction. (D) The VNO is positioned in ACSF solution and separated (insert : higher power view of the two parts). (E) The cartilaginous capsule of the VNO is delicately removed, and the VNO without its cartilaginous capsule is used for the rest of the experiments. Scale bars are: B-E, 1 mm.
Figure 2. Mouse vomeronasal acute slice preparation and tissular integrity. (A) The mouse VNO is vertically embedded in an agar 3% solution. The temperature of the agar must be lower than 41°C. (B) The agar block is cut in a pyramidal shape and 100 μm VNO sections (black dashed line) are generated in ACSF. (C) VNO slices can be selected under a fluorescent stereomicroscope in order to visualize a specific population of tagged sensory neurons. (D-F) Tissular integrity can be evaluated by immunohistostainings against the acetylated-tubulin protein, a higher power view of the V1rb2 gene-targeted neurons demonstrate the perfect conservation of the preparation. Neurons with their long dendrites reaching the surface of the lumen (E) as well as the expression of the structural protein in the dendritic knobs and microvilli can be observed (F). Scale bars are: B, 5 mm; C, 60 μm; D, 40 μm; E-F, 20 μm.
Figure 3. Calcium imaging and pheromone detection in vomeronasal acute tissue slices. (A) After a Fura-2AM loading phase, VNO slices are placed in a perfusion chamber and are maintained with an adapted anchor (high power view). (B) Experiments are performed in the dark and VNO slices are continuously perfused with ACSF at RT with a vacuum system. The temperature can be chosen using a temperature controller system composed by a bipolar Pelletier element and a thermal probe. This particular experiment was performed at RT. (C-E) VNO slices are observable under Hoffman phase contrast (C, Hv) or Fura 380 nm illumination before (D) and during neuronal activation (E, here with ATP). (F) Neuronal viability is evaluated with perfusion of ATP (125 μM). Here, chemostimulation is done with urine (Urine, 1:100) or with a mix of mouse pheromones (mix ph., 10-6 M) at a constant flow rate of 165 ml/h. Intracellular calcium levels (ΔF) can be recorded individually for each cell (Cell 1 to 3). (G) A V1Rb2 neuron is visualized under GFP illumination (1). (H) The loading of this neuron (1) as well as a non-V1rb2 expressing neuron (2) is shown. (I) The V1rb2 neuron is able to respond to 2-heptanone with an intracellular calcium increase. This particular non-V1rb2 expressing neuron also responds to 2-heptanone (cell 2). Scale bars are: C-E, 20 μm; G-H, 15 μm; ΔF = 340 nm / 380 nm. (F and I) Duration of stimulus application is indicated by bars under each trace. The arbitrary color scale represents the fluorescence intensity.
The calcium imaging method presented here enables to record, in an acute slice preparation, the pheromonal responses of mouse VNO neurons. With this approach, dissection from the animal to the vomeronasal neurons is, with some practice, easily achievable and provides a long-living tissue preparation. It allows time-consuming experiments like pharmacological investigations or the study of pheromonal coding. With this physiological technique, large populations as well as precise neuronal subpopulations can be analysed specifically. In addition, this method can be easily adapted to immunohistochemical approaches or experiments based on other calcium dyes. The use of these combined methodologies will surely allow the identification of new pheromonal ligands for the many orphan chemoreceptors expressed in the mouse vomeronasal organ.
The authors have nothing to disclose.
We want to thank particularly Monique Nenniger Tosato for her excellent technical support as well as Jean-Yves Chatton for his scientific advices and the imaging CIF platform of the UNIL for the microscope equipment. Funding was provided by the Swiss National Science Foundation.
Name of the reagent | Company | Catalogue number | Comments |
Adenosine 5’-triphosphate disodium salt solution (ATP) | Sigma-Aldrich | A6559-25UMO | |
Agar | Sigma-Aldrich | A7002-100G | Preferentially for immunohistochemistry |
Agar (low-melting) | Sigma-Aldrich | A0701-25G | Preferentially for calcium imaging |
CL-100 Bipolar Temperature Controller | Warner Instruments | W64-0352 | |
Confocal Microscope | Leica Microsystems | SP5 AOBS | |
Cy5-AffiniPure Goat Anti-Mouse IgG | Jackson ImmunoResearch | 115-175-071 | Protect from light |
DMSO (Dimethyl Sulfoxide) | Merck | 317275-100ML | |
Embedding molds, Peel-A-Way | Polysciences | 18646A-1 | 22 x 22 x 20 mm |
Fluorescent mounting media (Vectashield with DAPI, 10 ml) | Rectolab | H-1200 | |
FURA-2AM | Teflabs | 0103 | Protect from light |
Glisseal N (vacuum grease, 60 g) | Borer Chemie | Glisseal N | |
Large bath recording chamber (RC-26G) | Warner Instruments | 64-0235 | |
MetaFluor (software for calcium imaging; v.7.6.5.0) | Visitron Systems | ||
Monoclonal Anti-Tubulin, acetylated Mouse antibody | Sigma-Aldrich | T6793-.2ML | |
Normal goat serum (NGS, 10 ml) | Interchim | UP379030 | |
Platform for chambers (P-1) | Warner Instruments | 64-0277 | |
Pluronic F-127, 2 g | Invitrogen | P-6867 | |
Roti Coll (Dosing bottle, 10 g) | Carl Roth | 0258.1 | |
SC-20 Dual In-line Solution heater/Cooler | Warner Instruments | W64-0353 | |
Slice anchor (SHD-26GKIT) | Warner Instruments | 64-0266 | |
Stereofluorescence microscope | Leica Microsystems | MZ16FA | |
Super PAP PEN (hydrophobic pen) | Pelco International | 22309 | |
Triton X-100 | Fluka | 93420-250ML | |
Vibrating blade microtome VT 1200S | Leica Microsystems | 14048142066 | |
VisiChrome high speed polychromator system | Visitron Systems | ||
3D Data Visualization (Imaris; v.6.3.1) | Bitplane Scientific Software |