The associated chromosome trap (ACT) assay is a novel unbiased method for identifying long-range DNA interactions. The characterization of long range DNA interactions will allow us to determine the relationship of nuclear architecture to gene expression in both normal physiology and in diseased states.
Genetic information encoded by DNA is organized in a complex and highly regulated chromatin structure. Each chromosome occupies a specific territory, that may change according to stage of development or cell cycle. Gene expression can occur in specialized transcriptional factories where chromatin segments may loop out from various chromosome territories, leading to co-localization of DNA segments which may exist on different chromosomes or far apart on the same chromosome. The Associated Chromosome Trap (ACT) assay provides an effective methodology to identify these long-range DNA associations in an unbiased fashion by extending and modifying the chromosome conformation capture technique. The ACT assay makes it possible for us to investigate mechanisms of transcriptional regulation in trans, and can help explain the relationship of nuclear architecture to gene expression in normal physiology and during disease states.
1. Formaldehyde fixation of long-range chromatin interactions
2. Cell lysis to isolate nuclei
3. Restriction enzyme digestion with Bgl II
4. Ligation of interacting DNA segments
5. DNA Purification
6. Digestion with Msp I and ligation with oligonucleotide linkers
7. PCR amplification and sequence analysis
8. Representative Results
1. ACT assay using ABL-1 region as bait to determine its long range DNA interactions
As illustrated in Figure 1a, two Bgl II sites and one BamH I site were chosen for the ACT assay. In the second round of PCR, primer set 4626/2961 was used to amplify ABL-M1, 4630/2961 was used for ABL-M2, and 4636/2961 was used for ABL-M3. A typical gel pattern shows one to several bands (Figure 1b). Each fragment from an ACT assay consists of two combined DNA segments: one segment is derived from the bait DNA region, while the second segment comes from the associated partner, which was joined to the bait region segment by the first restriction enzyme recognition sequence. The second enzyme recognition sequence will appear at the end of the associated partner sequence (Figure 1c). The cloned ABL-M1 fragment contains DNA from the region of ABL1 located at chromosome 9q32.4 from +133,592,306-133,592,399, and the associated partner is located at chromosome 3p13 from +71,869,882-71,870,107. The identities of the associated partners are discovered by blasting their sequences using the UCSC genome browser (GRCh7/hg19 released in February, 2009). PROK2 was identified as the associated partner at the chr3p13 locus.
Similarly, the ABL-M2 associated partner was localized to chr5q21.1, while clone ABL-M3 was identified as an intra-chromosomal association near the ABL-1 locus.
2. Determining less prevalent long range interactions using ACT assay
Other assays based on 3C have reported many more interacting partners than that we have shown in Figure 1 and at the Igf2/H19 locus12. The methodology that we have outlined will select the most prevalent long range interactions. However, by increasing the number of PCR cycles, it is possible to identify additional, less frequent associations as well (Figure 2).
3. Differences in long range interactions in cancer cells when compared to normal tissues.
The ACT assay can also be used to identify differences in nuclear architecture and long range interactions between normal cells and cancer cells (Figure 3). These differences may reflect nuclear architecture changes that occur during cell transformation, and thus this assay may ultimately be applicable for diagnostic purposes. The similar gel patterns that occur in both normal and cancer tissues indicated that the ACT assay is reliable and repeatable. While the ACT assay can identify long range DNA partners, further analyses, such as FISH and ChIP assays, are required to verify the presence of the identified associations between distant loci. Genetic, physiological and biochemical studies can then be performed to elucidate the biological implications of these long range DNA associations.
Figure 1 ACT assay using ABL-1 region as bait DNA in HL-60 cells. a. DNA structure in ABL-1 region. The first restriction enzyme used in ACT assay was Bgl II. The primers for the second round of PCR are also labeled by arrows and corresponding primer numbers. b. Gel pattern of the ACT assay in 5% urea-PAGE. Primer pair 4626/2961 was used for amplifying clone ABL-M1 in the nested PCR, 4630/2961 was used for clone ABL-M2, and 4636/2961 was used for clone ABL-M3. c. DNA sequence of clone ABL-M1. DNA fragment from ABL-1 bait DNA is labeled in red, and the associated DNA partner is labeled in cyan. Bgl II site (AGACTC) was labeled in green, and Msp I site (CCGG) is labeled in purple.
Figure 2 PCR cycles affect ACT assay results. Using the imprinting control region (ICR) at the Igf2/H19 locus as bait DNA in mouse fibroblast cells, different cycling programs were applied in the first and second rounds of PCR in the ACT assay. 18-20 cycles in the first round of PCR did not amplify enough signal to be visualized. Twenty five cycles in the second PCR results in clear bands, while increasing the number of cycles for the second round of PCR induced a smear pattern in addition to more bands.
Figure 3 Detection of differences in nuclear architecture between normal colon tissue and colon cancer tissue in ACT assay. a. DNA structure of the ICR region at IGF2/H19 locus and IGF2 gene. Dpn II sites for ACT assay are labeled. Primers used in the second round PCR are labeled by arrows and numbers in different colors which correspond to each lane in panel b of the figure. b. Gel pattern of the ACT assay in 5% urea-PAGE. Normal colon tissue MAD03-1423 and colon cancer tissue MAD04-149 was obtained from Cooperative Human Tissue Network (CHTN) Western Division. After each colon tissue was homogenized, ACT assay was performed following the procedures described herein. Lane 1 represents the PCR results using primer pair #2961and #4161(5′-tctgcgccatcagggcagtgagac-3′) labeled in pink in panel a; lane 2 represents the PCR results using primer pair #2961 and #4163 (5′-gccgcgcggccacttccgattcc-3′) labeled in orange in panel a; lane 3 represents the PCR results using primer pair #2961 and #5145 (5′-gccatgcaggtaggatttgagctg-3′) labeled in blue in panel a; lane 4 represents the PCR results using primer pair #2961 and #5151(5′-gtctcaaataggggccagctagcttgg-3′) labeled in green in panel a. Unique bands that appear only in normal colon tissue are labeled by yellow arrows, and those bands that appeared only in colon cancer tissue are labeled in red arrows. ICR, imprinting control region; DMR, different methylated region.
Dekker et al. developed the chromosome conformation capture (3C) approach to detect the frequency of interaction between two genomic loci1, and 3C has been used extensively to investigate intra-chromosomal and inter-chromosomal associations between two known DNA regions in mammalian cells2-9. Although newly developed Hi-C methodology can be applied for study of genome-wide DNA association, ACT assay is still an effective technique for study of locus-specific DNA interaction10-11. We have modified this approach to identify unknown DNA regions that are associated with a known DNA region in cultured mouse and human cells (Figure 1). We named this method the associated chromosome trap (ACT) assay, as it provided us a reliable and reproducible method to identify novel unknown DNA partners that associate with a known target DNA region12. A successful 3C assay with appropriate controls is performed before executing the novel aspects of the ACT assay13. In order tofind as many associated DNA regions as possible, it is necessary to use various combinations of first and second restriction enzymes. It is especially important to use restriction enzymes that are insensitive to CpG methylation to perform the first 3C ligation step. Protein binding and DNA methylation can also influence restriction enzyme digestion efficiency and can lead to failure of ligation of the associated DNA regions for certain restriction enzyme digestions. The occurrence of intra- or inter-chromosomal ligation depends on protein-DNA cross-linking and appropriate physical maps of both of the associated DNA regions. Thus, some preliminary experiments are essential to establish a practicable effective formaldehyde concentration and treatment time in the ACT assay. A range of final concentrations of formaldehyde (from1.5% to 2%) have been used in several labs during the 3C portion of the assay7,9. Alternatively, the oligonucleotides used as linkers can be designed to match the cohesive end cut by the second restriction enzyme. Although we found that 18-20 cycles in the first round of PCR and 20-25 cycles in the second round of PCR could provide clear bands, it is necessary to establish the best PCR conditions for each experiment (Figure 2).Intra-molecule annealing between 5′-end and 3′-end complementary adaptor sequence of a DNA strand may occur in PCR, it inhibits adaptor-specific primer annealing with the DNA molecule, and resulted in much lower amplification efficiency in the first several cycles. After the target DNA was amplified for cycles, its amount may be much larger than these nonspecific reactions, and may facilitate the competition of primer annealing to the target DNA molecules. This is also why we may see background amplification, and why the first round PCR product has to be diluted to decrease background amplification.It is important to remove excess primers from the PCR reaction in order to decrease the background in the second round of PCR. As in all PCR-based experiments, it is vital to design primers that are not located in repeat sequence regions, which constitute the majority of human and mouse DNA. Although newly developed Hi-C methodology can be applied for study of genome-wide DNA association, ACT assay is still an effective technique for study of locus-specific DNA interaction.
The authors have nothing to disclose.
We thanks Adelle Murell and Wolf Reik very much for sharing their 3C protocol. This work was supported by the Department of Defense and the Research Service of the Department of Veterans Affairs.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
RPMI1640 medium | Invitrogen | 22400-105 | ||
acrylamide | Invitrogen | 15512-023 | ||
ATP solution, 10mM | Invitrogen | AM8110G | ||
fetal bovine serum | Invitrogen | 16000-044 | ||
penicillin-streptomycin | Invitrogen | 15140-122 | ||
1M Tris pH8.0 | Invitrogen | AM9856 | ||
RNase A | Invitrogen | 12091-039 | ||
SDS | Invitrogen | 15525-017 | ||
urea | Invitrogen | 15505-035 | ||
BamH I | NEB Biolabs | R0136T | ||
Bgl II | NEB Biolabs | R0144M | ||
Dpn II | NEB Biolabs | R0543T | ||
Msp I | NEB Biolabs | R0106S | ||
dNTPs | NEB Biolabs | N0447L | ||
proteinase K | NEB Biolabs | P8102S | ||
T4 DNA ligase | NEB Biolabs | M0202T | ||
37% formaldehyde | Sigma-Aldrich | F8775 | ||
Bis-acrylamide | Sigma-Aldrich | 146072 | ||
dithiothreitol | Sigma-Aldrich | 43815 | ||
glycine | Sigma-Aldrich | 50046 | ||
PMSF | Sigma-Aldrich | 93482 | ||
proteinase inhibitor | Sigma-Aldrich | S8830 | ||
Nonidet P-40 | Roche Applied Science | 11754599001 | ||
KlenTaq1 | Ab peptides | 1001 | ||
dCTP alpha P32 | PerkinElmer | BLU513H250UC | ||
PTC-100 Thermal Cycler | MJ Research | mjptc100 | ||
Power Supply | Bio-Rad | 164-5056 | ||
OmniPAGE Maxi | Aurogene Life Science | VS20D | ||
Typhoon 9400 | GE Healthcare | 63-0055-78 |