The micro-dissected explants technique is a robust and reliable method for isolating proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. Uniquely, these cells have been clonally derived to produce skeletal muscle stem cell lines used for in vivo transplantation.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors.
Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Two approaches can be employed to isolate proliferative skeletal muscle cells. In the first muscle tissues are enzymatically digested to isolate single cells prior to plating out 1. The second method is to explant pieces of muscle tissue into culture to allow cells to grow out during incubation 2, 3. The second method is described in this protocol. Tissue culture itself has its roots in explant culture. The year 2007 was the 100th anniversary of the classic experiments of Harrison in which he obtained neuron outgrowths by incubating nerve explants in hanging drops of lymph 4. Explant culture techniques have been used and refined in a variety of different contexts in the ensuing 100 years as a means of generating proliferative primary cultures of adult and embryonic cells 4, 5. The principle behind the explant technique, however, remains the same; to minimise the trauma of primary cell isolation by maintaining the three-dimensional structure of the parent tissue during the crucial early stages of cell outgrowth while providing the outgrowing cells with a rich nutritive media in which to proliferate. In skeletal muscle there is an additional advantage to using explant culture because the act of cutting up the muscle tissue mimics muscle fibre trauma, the usual trigger for satellite cell activation, migration and proliferation 3, 6. Adult skeletal muscle satellite cells (also called myoblasts) are the proliferative stem cell population responsible for muscle fibre repair and growth 7.
Skeletal muscle explants thus mimic the in vivo environment of the regenerating muscle and stimulate stem cell migration and division. In the embryo, the majority of vertebrate skeletal muscle (trunk and limb muscles) derives from the somites, although somitomeres and branchial arches give rise to the musculature of the head 8, 9. The myotome can be identified as two distinct groups of Myf-5 expressing stem cells located in the dorsal, medial and lateral edges of the differentiating somite, respectively. Respectively, these cells generate the epaxial muscles of the back, which differentiate in situ, and the ventral and lateral hypaxial musculature (limbs, abdomen and respiratory muscles) which require the migration of muscle stem cells from the somite 10. Embryonic muscle stem cell migration is under the control of Pax 3 11. Myf-5 expression is essential to the establishment of the embryonic musculature and this importance persists to postnatal muscles where over 98% of activated satellite cells express Myf-5 12. Myf-5 is therefore a reliable and specific marker of the proliferating skeletal muscle stem cell population in both adult and embryonic tissues. Embryonic muscle stem cells (also called muscle cell progenitors, skeletal muscle precursors, myoblasts or even embryonic satellite cells) can be isolated from the somites of early-stage mouse, chick and frog embryos 13. In order to isolate myogenic cultures from the embryonic skeletal muscles of older embryos the authors have adapted the microdissected explant technique for embryonic tissues. A similar approach is used by Cossu et al. 14 to generate clonal cell populations from the embryonic somite 14.
1. In vitro Cell Culture of Skeletal Muscle Stem Cells (SMSc)
SMSc are cell lines of single cell origin which have been clonally derived from primary skeletal muscle explant cultures. They can be cultured using standard tissue culture methodology if sufficient care is taken. Note that, unless indicated otherwise, all manipulations described are carried out under aseptic conditions using a laminar flow hood (Class 1 or Class 2 sterile cabinet) and all culture reagents are warmed to 37°C in a water bath before use.
1.1. Subculture
For established SMSc lines, when cells reach approximately 95% confluence, they should be removed from their culture vessel, diluted and placed into a fresh vessel to enable further growth. This subculture procedure can be achieved by means of a number of different enzymatic procedures, trypsin/EDTA being the most frequently used (see Note 3). It is usual (and good) practice to grow cells at densities which require them to be subcultured on the third day of growth. For most SMS cell lines this can be achieved by splitting cells 1/10 at each subculture. This allows careful monitoring of cells and enables those performing the tissue culture to immediately identify unusual growth behaviour (for example faster growth) which could indicate phenotypic changes to the cell line such as transformation or reduction in apoptosis caused by adaptation to culture conditions. Additionally, a consistent and careful subculturing routine vastly reduces the incidence of such events.
1.2. Cryopreservation of Cell Lines and Primary Cultures
1.3. Determining Cell Numbers
2. Establishing Primary Skeletal Muscle Microexplant Cultures
Primary micro-explant culture can be used to isolate SMSc from any accessible skeletal muscle including the individual muscles of the fore and hind limbs, diaphragm, back and abdominal muscles. The method for deriving microexplant cultures from juvenile and adult muscles is described in detail by Smith and Schofield 3 and has subsequently been used extensively to derive SMS cells from juvenile, adult and aged mouse muscles. The method can also be used to derive cultured skeletal muscle cells from fish 24 and human skeletal muscle (Rao and Smith, unpublished). Outgrowth of SMSc from a mouse muscle microexplant is illustrated in Figure 1a, b. The method has been modified for the isolation of embryonic muscle precursor cells (see Section 3). The basic method is as follows:
2.1. Clonal Derivation
Primary explant myoblast cultures (Figure 1a, b) are a useful and accurate tool for establishing a variety of different growth parameters in wild-type and mutant skeletal muscles. Clonal derivation, the isolation of a cell line from a single cell, is an essential step in the isolation of skeletal muscle stem cells and can also be used to subclone SMSc lines transfected with RNAi constructs or transgenes. Established SMSc and primary explant cultures are highly density dependent and will “crash” (detach from the dish and die) if plated out at too low a cell density. This is because SMSc release soluble factors which are required to maintain growth and cell survival. To simulate a high-density culture and supply these factors during the cloning process, SMSc are cloned in self-conditioned medium. The addition of conditioned medium was found to be essential to allow individual cells to proliferate in an isolated environment.
2.2. Karyotyping
Karyotyping is an important method of monitoring cell phenotype. Cell lines derived by clonal derivation should be karyotyped to ensure that they have retained a diploid chromosome complement without gross chromosomal rearrangements which could affect their phenotype.
2.2.1. Preparation of Slides for Karyotyping
3. Establishing Primary Micro-explant Cultures from Embryos
Three mouse strains were used to validate this method, wild-type (C57BL/10) together with mdx and CAV3KO (both dystrophic mutants). The dystrophin-deficient mdx mouse originated spontaneously in C57BL/10, this line was obtained from the Bullfield laboratory in 1991 and has since been continually maintained in our inbred colony 26. CAV3KO dystrophic mice, which contain a mutation in the caveolin-3 gene, were bred onto the C57BL/10 background for 10 generations before being used in this study 27. Each mouse line generated a robustly reproducible outgrowth, proliferation and survival profile which was embryonic stage specific and different for each strain. The following protocols were adapted for embryos from Smith and Schofield PN (1994) 3, essentially as in Merrick 21.
3.1. Embryo Collection
3.2. Embryo Microdissection
3.3. Setting Up Embryo Microexplant Cultures
3.4. Monitoring Outgrowth
Outgrowth rate is a reliable measure of the growth rate of embryonic skeletal muscle explants and under the carefully controlled conditions described here is highly reproducible.
3.5. Subculturing Primary Embryonic Explants
Once confluent, explant cultures displaying the morphological features of SMSc (Figure 3f) can be subcultured as follows 3, 21:
4. In vitro Analysis of Skeletal Muscle Stem Cells and Primary Cultures
4.1. Preparation of Cells
4.2. Preparation of Paraformaldehyde Fixative
4.3. Apoptosis and Proliferation Assay
4.4. Immunohistochemistry
Cells fixed onto coverslips can also be used for immunohistochemistry. For antigen retrieval using a pressure cooker coverslips must be firmly attached to glass slides using standard paper clips. Immunostaining can be used to identify proliferating cells, using an antibody to Ki67 (1/1,000 dilution), to establish identity, using an antibody to Myf-5 (1/1,000 dilution), or to investigate gene expression (see Section 4.5). Immunostaining can be achieved using a number of methods, the following (described in (28, 29)) is used routinely by the authors:
4.5. Differentiation
4.6. Transfection of SMSc: Expression of Transgenes and shRNAi Constructs
Stem cells and primary cultures are refractory to transfection and with a majority of methods the transfection rate in SMSc and primary skeletal muscle cells is very low (<10%), preventing the use of transient transfection methods. To overcome this it has been standard practice in our laboratory to isolate clonal derivates from transgene transfected cultures (see Section 3.2.1) following transfection with calcium phosphate or lipofectamine. Alternatively cells can be efficiently transfected using infection of virally packaged constructs. Figure 1m shows stable expression of β-galactosidase in PD50A, a clonal SMSc derivative isolated under G418 selection following infection with pIRV, a replication defective retrovirus carrying the genes for neo/G418 resistance and β-galactosidase (19). This cell line was used to formally demonstrate that SMSc behave as functional stem cells in vivo (see Figure 3.1). While the generation of a stable clonal cell line expressing a marker gene is desirable for in vivo stem cell transplantation experiments, it is a time-consuming and unsatisfactory method of analysing gene function in vitro. For these reasons the authors have recently developed an optimized modification of the Lipofectamine 2000 transfection reagent which is capable of delivering transfection rates of 60 to 70%. This allows the analysis of gene function using transient transfection of transgenes or RNAi constructs into SMSc or primary explant cultures (Figure 3h, i). The authors use a short hairpin RNAi vector (pSHAG RNAi) (30) to generate shRNAi constructs capable of gene-specific targeting of mRNA expression in SMSc. The success of the shRNAi technique depends on two elements: (a) an efficient transfection method and (b) the design of a short hairpin sequence which specifically recognizes the target gene. A shRNAi construct directed to eGFP can be used to validate the RNAi knockdown method (Figure 3j,m).
4.7. Optimised LipofectamineTM 2000 Transfection Protocol for SMSc
5. Representative Results
When explants are carefully explanted from adult skeletal muscle or from embryos the explants will begin to generate cells within a few hours to 72 hours of incubation at 37°C (5% CO2/air) (Figure 3A). The time taken for this to occur depends on the source of the explants: embryonic explants will outgrow more quickly than older adult skeletal muscle explants. In our experience the timing of outgrowth is highly reproducible 3, 29. Expansion of the cell population will occur over a period of days (embryo explants) or weeks (older skeletal muscle explants) to generate high density aggregating SMS cell primary cultures (see Figure 3B-F for illustration of these cultures). Figures 1 & 3 show representative results of the successful derivation and culture of skeletal muscle and embryonic explants, clonal derivation and in vivo transplantation of skeletal muscle derived adult stem cells, β-galactosidase labeling, karyotyping and myf-5 immunohistochemistry of embryonic SMSc to illustrate skeletal muscle origin of the cell populations. Figure 3 shows a representative result of outgrowth scoring (using Myf-5 immunohistochemistry to visualize SMSc); the morphology of embryonic muscle primary cells; DAPI staining for apoptosis and the shRNAi transfection protocol. Further details can be found in the figure legends relating to these two figures. Figure 2 illustrates the procedure from embryo micro-dissection to generate enriched populations of embryonic skeletal muscle stem cells.
Table 1: Calculation table to estimate the number of cryovials required for maximum cell viability during cell freeze down protocols
Plate/Flask/ chamber slide | Volume of Culture medium | PBS washes | Volume of trypsin | Number of freeze down vials (3.1.2) |
96-well | 50 μL | 2 X 100 μL | 25 μL | N/A |
48-well | 150 μL | 2 X 200 μL | 50 μL | N/A |
24-well | 500 μL | 2 X 700 μL | 200 μL | N/A |
6-well | 3 mLs | 2 X 3 mLs | 500 μL | 1 |
Small (25 cm2) | 10 mLs | 2 X 10 mLs | 1 mL | 2 |
Medium (80 cm2) | 10 mLs | 2 X 10 mLs | 3 mLs | 4 |
Large (175 cm2) | 10 mLs | 2 X 10 mLs | 5 mLs | 8 |
Chamber well | 500 μL | 2 X 500 μL | 100 μL | N/A |
N/A = not applicable; cell numbers were too low to freeze down unless multiple wells were frozen down together.
Figure 1. Isolation of skeletal muscle stem cells (SMSc) from microexplants: (A) Early outgrowth from explanted adult skeletal muscle (day 2). (B) Established explant outgrowth showing aggregated cultures and high cell density. Clonal derivation of SMSc. (C) Single cell isolated into a 96 well plate. (D) Colony of single cell origin. (E) Established clonal population. (F) Verification of SMSc identity using Myf-5 immunohistochemistry. Cells derived from SMSc clone PD50A (expressing β-galactosidase) in host mice at 3 months (G) and (H-J) 14 months post-injection of 2,000 PD50A cells into mouse tibialis anterior muscle. (G) Three recently fused (centrally located nuclei) β-galactosidase-positive cells (blue stain) in muscle fibre (longitudinal section). (H) Extensive contribution of β-galactosidase-positive cells (brown stain, detected by anti-β-galactosidase antibody) in muscle fibres (transverse section). (I) β-Galactosidase-positive satellite cell (brown stain, detected by anti-β-galactosidase antibody). (J) Secondary antibody control (no staining). (K) β-Galactosidase-positive cells (blue stain) proliferate in culture when isolated from injected host muscles 12 months post-injection. (L) Karyotype of a mouse clonal SMSc line (DMN8) showing normal diploid chromosome complement. (M) Histochemistry showing β-galactosidase expression in a colony of PD50A cells (Figure 3.1 g,k, reproduced with permission from AACR press, Smith and Schofield, 1997).
Figure 2. (a) Illustration of the embryo dissection process. The figure represents an E15.5 embryo where bone primordial (cartilage) could easily be identified and dissected free of the surrounding skeletal muscle tissue. At this stage, and in later stage embryos (E15.5 E17.5), dermis was also removed to maximise the proportion of skeletal muscle cells obtained. (B) Setup of primary explant cultures in a 96-well plate. Each embryo was used to produce one plate as seen above. Usual practice is to plate replicates of three separate embryos (three plates = 180 wells) to establish outgrowth rates.
Figure 3. Embryonic primary explant cultures were scored at 3, 7, 14 and 21 days of culture and assigned an outgrowth level representative of confluence level. (A-E) C57BL10 E15.5 primary embryonic explant cultures stained with Myf-5 to illustrate 0 14% ( ); 15 24% (+); 25 49% (+); 50 74% (++); 75 100% (+++) levels of confluence. The proportion of wells showing each level of outgrowth (on each day of scoring) was multiplied by an arbitrary number ( = 1; (+) = 2; + = 3; ++ = 4 and +++ = 5) before collating data to give a final outgrowth value. Approximately 85% of wild-type (C57BL/10) primary eSMSc stain for the skeletal muscle cell marker Myf-5. Magnification is 10. (F) Established embryonic cultures have the morphological characteristics of adult SMSc, bipolar cells (small arrow) and spherical monomorphic cells (large arrow). (G) Identification of fragmenting apoptotic nuclei using DAPI staining. (H-I) High levels (~75%) of transfection of a GFP-expressing construct into SMS cell lines using the optimized Lipofectamine 2000 transfection method. (I) Counting of total cell number is aided by DAPI counterstain. RNAi using pSHAGshRNAigfp (J-M) abolishes GFP expression in SMSc (see (29) for an example of this construct used as a control). (J) Control (mock transfection) showing GFP expression in a GFP SMSc line. (K) DAPI control. (L) shRNAiGfp 24 h after transfection. (M) DAPI control for shRNAiGfp transfected cells in (L).
Figure 4. Dystrophic, embryonic Myf5-positive myoblast are hyperproliferative and prone to apoptosis. (A) The outgrowth rate of embryonic myoblasts from muscle explant culture is increased both in mdx mutants from E11.5 and in cav-3(-/-) mutants at E15.5 and E17.5 when compared with WT explants cultured in parallel. (B) A Myf5-immunostained explant. (C) Hyperproliferation of embryonic myoblasts in mdx mutants from E11.5 and in cav-3(-/-) mutants from E15.5, as determined by Ki67-positive immunoreactivity (D). (E) Elevated apoptosis from E11.5 in mdx embryos and from E15.5 in cav-3(-/-) embryos, as shown by DAPI staining (F); the arrow in F points to an apoptotic cell. *p<0.05 compared with WT; **p<0.01 compared with WT; *p<0.05 when comparing mdx with cav-3(-/-). (G,H) E15.5 primary cultured WT embryonic myoblasts with Myf5 staining (G) and a second antibody control (H). (I) The outgrowth rate of E11.5 WT explants increased (*p<0.05) in E11.5 mdx explant-conditioned medium (CM), but not in cav-3(-/-) or WT CM. Error Bars indicate s.d. This figure is reproduced under authors copyright and was first published by the Company of Biologists in Merrick et al., 2009.
6. Notes: critical steps and possible modifications
Microdissected explant cultures can be used to reliably and reproducibly isolate cell populations containing a very high proportion (~85%) of proliferative Myf-5 positive skeletal muscle stem cells (SMSc). Under the rigorously controlled culture conditions described here primary explant cultures can be used to characterize the growth behaviours of genetically mutant mouse SMSc and can be used as a means of generating myotubes for detailed in vitro analysis of differentiation processes. Careful maintenance and manipulation of these cultures enables long-term culture and expansion. Using the methods described here it is also possible to derive clonal skeletal muscle stem cell lines from explant cultures by means of single cell dilution. To achieve the proliferation of isolated single cells during the cloning procedure, “conditioned medium” is used to mimic the normal requirement of these cells for high-density culture. The method is applicable (with modification) to embryonic, adult and aged-adult tissues and in addition to mouse can be used to isolate cells from the skeletal muscles of other species including human (Rao and Smith, unpublished), chick embryo and fish (salmon) 24. Clonally derived SMSc can be analysed in vivo by intramuscular transplantation and under these conditions injected SMSc will combine with host myotubes to form hybrid muscle fibres. Intramuscularly injected SMSc do not form tumours and have been found in host muscles in the satellite cell position more than a year after injection, suggesting that they are subject to endogenous control by the satellite stem cell niche.These cells can be re-isolated from injected hosts as proliferative SMSc more than 12 months after host injection 19.
The authors have nothing to disclose.
We thank Patrick Paddison for his gift of the shRNAi shuttle vector. Angela Sloan generated the GFP RNAi image in Figure 3. We also thank the following funding bodies for their support:
Muscular Dystrophy Campaign grant number RA2/592/2; SPARKS grant number 02BHM04, The Royal Society grant number 574006.G503/1948./JE and BBSRC grant number 6/SAG10077.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
DMEM/F12 1:1 mix | Sigma-Aldrich Company | Liquid medium: (Dulbecco’s Modified Eagles’s medium and Ham’s F12 medium, 1:1 v/v) | ||
100× Glutamine (200mM) | Sigma-Aldrich Company | Diluted in medium to a 1× concentration of 2 mM (Glutamine HYBRI-MAX R) | ||
Fetal calf serum (FCS) | From a number of different companies | Batch tested on primary cultures and skeletal muscle cell lines. 10-20% supplement to liquid media | ||
Heraeus Labofuge 300 | Heraeus and distributors of Heraeus equipment | Lab centrifuge capable of reaching 1,000 rpm | ||
15 ml Falcon centrifuge tubes | Fisher Scientific | Must fit lab centrifuge | ||
Tissue culture plasticware (25, 75 or 175 mm2 tissue culture vessels; 96-well tissue culture plates. 60 mm Petri dishes). | Nunc (available from Fisher Scientific in the UK) | |||
Humidified CO2 incubator (Heraeus) | Heraeus and distributors of Heraeus equipment | Ours is copper lined, recommended for reducing contamination | ||
Sterile hood with laminar air flow (Heraeus) | Heraeus and distributors of Heraeus equipment | Ours is a Class II hood – suitable for use with Human tissues | ||
Water Bath | Grant Equipment | Maintained always at 37°C | ||
Inverted microscope | Leica DMIRB, Leica Instruments, UK) | |||
70% Ethanol | For sterilization (animals, dissection instruments) and swabbing benches, hood, etc. | |||
Calcium- and magnesium-free phosphate-buffered saline (PBS) | Sigma-Aldrich Company, UK | Cell culture-tested PBS (Dulbecco’s formula) is purchased as a ready-mixed powder or in tablet form and made up with doubledistilled water before sterilization by autoclave. PBS consists of 2.68 mM potassium chloride (KCl); 1.47 mM potassium phosphate monobasic (KH2PO4); 0.137 M sodium chloride (NaCl); and 8.1 mM sodium phosphate dibasic (Na2HPO4). PBS can be prepared from scratch as follows: 200 mg KCl, 200 mg KH2PO4, 8 g NaCl and 1.15 g Na2HPO4/l of double-distilled water followed by sterilization by autoclave. | ||
CryoTube vials | Nunc (see above) | |||
A Neubauer haematocytometer and coverslips | Fisher Scientific, UK | For estimating cell counting | ||
Hand counter | Fisher Scientific, UK | |||
Dissection microscope, Zeiss Stemi 1000 | Zeiss, UK | For preparation of explants | ||
Small sterile hood | ||||
Sterile dissection instruments (including Jeweler’s forceps) | Sterilised by autoclave | |||
Sterile plastic collecting vessels (7 ml bijou tubes or 20ml universals) | Nunc (Fisher Scientific) | |||
Warm PECM | Constituents purchased from Sigma-Aldrich, UK as above | Made up in the sterile hood and warmed to 37°C in the tissue culture waterbath. DMEM:F-12 supplemented with 20% FCS, 1% glutamine and + 1% penicillin & streptomycin solution | ||
Dispase (50 μg/ml, equivalent to 6 units/mg) | Available from MP Biomedicals, UK | |||
10 μg/ml 4_,6 Diamidino-2-phenylindole, dihydrochloride (DAPI). | Sigma-Aldrich, UK | For microscopic visualization of apoptosis and mitosis | ||
Vectashield fluorescent mounting fluid | Vector Laboratories, UK | |||
Fluorescent upright microscope with ultraviolet filter (we use a Nikon Eclipse E600) | Nikon, UK | |||
Digital camera and imaging software (we use a Nikon Coolpix 995 camera; A Nikon D3 camera | Nikon, UK | |||
OpenLab4.0a software | Improvision, UK | |||
Photoshop CS4 | Adobe |