22.16:

Induced Electric Dipoles

JoVE Core
Physique
Un abonnement à JoVE est nécessaire pour voir ce contenu.  Connectez-vous ou commencez votre essai gratuit.
JoVE Core Physique
Induced Electric Dipoles

3,817 Views

00:00 min

April 30, 2023

A permanent electric dipole orients itself along an external electric field. This rotation can be quantified by defining the potential energy because the external torque does work in rotating it. Then, the potential energy is minimum at the parallel configuration and maximum at the antiparallel configuration. While the former is a stable equilibrium, the latter is an unstable equilibrium.

Since the absolute value of potential energy holds no physical meaning, its zero value can be chosen as per convenience. It is chosen to be in the configuration when the electric dipole is perpendicular to the field.

The polarity of molecules determines whether they are a good solvent. For example, water is a good solvent for common salt because it attracts the positive and negative ions toward the opposite charge centers inside it, thereby breaking apart the sodium chloride crystals.

Not all molecules, however, possess a permanent electric dipole. If the positive and negative charge centers are located at the same point, there is no separation. For example, the molecular structure of carbon dioxide is symmetric in the charge distribution. Other organic compounds, such as methane, are also non-polar.

However, in the presence of an external electric field, the charge centers are separated because the negative charge center shifts toward the electric field, while the positive charge center shifts away from the field. Since this happens for all molecules, the external field induces a polarity across the substance.

It is interesting to note that the induced dipole moment somewhat nullifies the electric field. This scenario arises near the dipole, where its electric field is opposite to the external electric field. This mechanism reduces the electric field inside dielectrics.