15.34:

Alkylation of β-Diester Enolates: Malonic Ester Synthesis

JoVE Core
Organic Chemistry
Un abonnement à JoVE est nécessaire pour voir ce contenu.  Connectez-vous ou commencez votre essai gratuit.
JoVE Core Organic Chemistry
Alkylation of β-Diester Enolates: Malonic Ester Synthesis

2,979 Views

00:00 min

April 30, 2023

Malonic ester synthesis is a method to obtain α substituted carboxylic acids from ꞵ-diesters such as diethyl malonate and alkyl halides.

Figure1

The reaction proceeds via abstraction of the acidic α hydrogen from a ꞵ-diester to produce a doubly stabilized enolate ion. The nucleophilic enolate attacks the alkyl halide in an SN2 manner to form an alkylated malonic ester intermediate with a new C–C bond. Further treating the intermediate with aqueous acid or base results in the hydrolysis of the two ester groups to give a 1,3-dicarboxylic acid. The resulting ꞵ-diacid is unstable at high temperatures and readily eliminates CO2 through a cyclic six-membered transition state, forming an enol. The enol tautomerizes to its more stable keto form producing a monosubstituted carboxylic acid. However, a disubstituted carboxylic acid is achieved if the deprotonation and alkylation steps are repeated before hydrolysis and decarboxylation.