10.7:

Moment of Inertia

JoVE Core
Physique
Un abonnement à JoVE est nécessaire pour voir ce contenu.  Connectez-vous ou commencez votre essai gratuit.
JoVE Core Physique
Moment of Inertia

6,678 Views

01:14 min

April 30, 2023

The comparability between linear and angular velocities, linear and angular accelerations, and the kinematic equations of translational and rotational motion can be extended to the concept of inertia.

If a rigid body is rotating about an axis but is not in translational motion, its translational kinetic energy is zero. However, since each particle undergoes rotational motion, it possesses non-zero velocity and kinetic energy. Thus, the kinetic energy of the rigid body, which is the sum of the kinetic energy of its constituents, is non-zero. The rotational kinetic energy of a rigid body is given as half the square of the angular speed times the moment of inertia.

Rigid bodies and systems of particles with more mass concentrated at a greater distance from the axis of rotation have greater moments of inertia than bodies and systems of the same mass but concentrated near the axis of rotation. For instance, a hollow cylinder has more rotational inertia than a solid cylinder of the same mass when rotating about an axis through the center.

Although defined while keeping rigid bodies in mind, the moment of inertia also applies to single particles. It helps treat objects rotating with respect to inertial frames of reference as single particles with their total mass concentrated at the center of mass.

This text is adapted from Openstax, University Physics Volume 1, Section 10.4: Moment of Inertia and Rotational Kinetic Energy.