Summary

低成本肌外肌电图电极的开发:简化的制造和测试工作流程

Published: April 12, 2024
doi:

Summary

我们的目的是提供一份更新的、易于遵循的关于肌膜外肌电图电极制造和测试的指南。为此,我们提供了材料采购说明以及制造和测试过程的详细演练。

Abstract

肌电图 (EMG) 是检测神经肌肉异常的有价值的诊断工具。植入式肌外膜电极通常用于临床前模型中测量 EMG 信号。尽管存在描述表扬电极制造原理的经典资源,但将电极理论转化为实践的说明性信息很少。为了解决这个问题,我们提供了一个更新的、易于遵循的指南,用于制造和测试低成本的肌外电极。

通过将两个铂铱箔折叠并插入预切的硅胶基座以形成接触表面来制造电极。接下来,将涂层不锈钢丝焊接到每个接触面上以形成电极引线。最后,使用有机硅混合物密封电极。进行了 离体 测试,将我们定制的电极与盐水浴中的行业标准电极进行比较,其中在所有波形中发现了高水平的信号一致性(正弦 [类内相关性 – ICC= 0.993]、方波 [ICC = 0.995]、三角形 [ICC = 0.958])和时间同步性(正弦 [r = 0.987]、方波 [r = 0.990]、三角形 [r= 0.931])。还通过电化学阻抗谱量化了低水平的电极阻抗。

还进行了 体内 性能评估,其中大鼠的股外侧肌用定制的电极进行手术器械检测,并在上坡和下坡行走期间获得信号。正如预期的那样,下坡行走期间的峰值 EMG 活动 (0.008 ± 0.005 mV) 明显低于上坡 (0.031 ± 0.180 mV,p = 0.005),支持该设备的有效性。植入后 14 天和 56 天 (分别为 0.01 ± 0.007 mV、0.012 ± 0.007 mV;p > 0.05)和无组织学炎症,也支持了该设备的可靠性和生物相容性。总的来说,我们为低成本落射电极的制造和测试提供了更新的工作流程。

Introduction

肌电图 (EMG) 是研究肌肉电活动的强大工具。肌电图记录在临床前动物模型中特别有用,以评估治疗神经肌肉功能障碍的干预措施的有效性。在这些模型中,植入式生物相容性电极通常用于评估运动神经元和肌肉纤维之间的神经生理学接口。这些植入式电极可以提供肌肉兴奋的局部测量,并且可以在配置、形状和材料方面有所不同,最佳设计最终取决于位置和预期用途。

尽管它们适用于在临床前模型中评估肌肉兴奋,但肌外电极的使用可能会受到成本的限制。因此,许多研究人员使用内部生产的定制附加肌电极。尽管有资源详细介绍了电极制造、测试和使用的基本考虑因素 1,2,但需要更新的指导指南,详细说明使用现代方法获取、制造和验证外延电极。以 Loeb 和 Gans3 以及其他电极理论基础工作为基础,我们提出了有关采购和制造低成本附加电极的现代说明,并在一系列离体体内实验中测试了它们的性能。其目的是为科学界的其他人提供一个用户友好的指南,以采购、制造和测试内部低成本的动物用肌外膜电极,从而在临床前模型中更广泛地量化肌肉兴奋。

在该协议中,我们提供了在现代电生理学实验室中采购、制造和测试用于动物的附阴电极的指导指南。为制造选择的电极参数,例如形状、尺寸、接触表面积、电极间距离、引线长度等,都是根据我们的实验需求选择的,并且与市售的行业标准外延电极相当(参见 材料表)。我们鼓励其他团队修改这些参数以满足他们的需求,此外还选择与其用例相匹配的可靠行业标准电极。

为了让读者相对快速地了解电极性能,我们还提供了一个 离体 测试方案示例,可选择测量电极阻抗。此外,我们给出了 体内电极性能评估的示例。 离体 实验将定制电极与盐水浴中的行业标准电极进行了比较,以模拟稳定的生理条件。还通过电化学阻抗谱 (EIS) 离 评估阻抗。 体内实验 包括将定制电极手术植入 16 周龄雌性长埃文斯大鼠(HsdBlu:LE、Envigo)的股外侧肌 (VL) 肌肉中,以在已知引起高信号或低信号的条件下测量 EMG 信号(上坡、下坡行走)。为了评估定制电极的可靠性,在完全手术恢复后和牺牲前(分别为植入后 14 天和 56 天)在水平行走期间获取 EMG 信号。对仪器化的肌肉进行苏木精-伊红 (H&E) 染色,以评估定制电极的生物相容性。

Protocol

体内程序是在密歇根大学机构动物护理和使用委员会(IACUC批准 #PRO00010765)的批准下进行的,并按照美国国立卫生研究院关于实验室动物护理和使用的指南进行。 1. 电极采购和制造 注意: 图 1 提供了所有关键制造步骤的高级摘要,并带有一个 QR 链接,该链接提供了额外的视觉说明。 直接从制造商处批量采购生…

Representative Results

离体 性能ICC 显示,定制电极和行业标准电极在所有波形(正弦 [ICC = 0.993]、方波 [ICC = 0.995]、三角形 [ICC = 0.958];p < .001)上具有高度一致性。Bland-Altman 图还揭示了电极之间的高度信号一致性。 图 3 总结了 Bland Altman 图和 Pearson 相关性,其中定制电极和行业标准电极之间存在很强的正相关关系。Pearson 相关性显示,在所有波形(正弦 [r = 0.987]、方波 [r = 0….

Discussion

我们的目标是简化 EMG 制造过程,更广泛地采用和实施 epimysial 电极设计,从而提高可及性,并推进神经肌肉研究。为此,我们提供了一个用户友好的指南,用于在内部采购、制造和测试低成本的失散电极。为了支持其他研究小组,我们还提供了补充 3D 打印模板,以促进为他们的研究工作生产内部外延电极。

考虑采用这些制造技术的研究人员读者应考虑以下几点:1) 此工作?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国家关节炎研究所和肌肉骨骼和皮肤病 Grant R01AR081235 (给 LK Lepley) 的支持。作者感谢以下个人为我们的生物相容性电极的制造和测试做出的贡献:Joel Pingel、Grant Gueller、Akhil Ramesh、Joe Letner、Jacky Tian 和 Ross Brancati。

Materials

Electrode Materials
            Quantity & price per electrode
Contact surface Prince and Izant PT90/IR10 1.25 mm x 5 mm foil Catalog #1040055  2 per electrode
$7.50 per foil
$15.00 per electrode
PFA coated stainless-steel electrode lead wire  A-M Systems Multi-Stranded PFA-Coated Stainless Steel Wire 50.8 µm strand diameter  Catalog #793500 Dependent on desired lead length (e.g., 9 inch lead wires x2)
$128 per 25 ft spool
$5.12 per foot
$0.42 per inch (x18)
$7.68 per electrode
Folding jig  3D printed
(see .gcode file)
NA NA
Sealant for electrode body Nusil Med-1137 liquid silicone Catalog #MED-1137 1 gram
$344.66 per 2 oz. (59.15 mL)
$5.83 per electrode
Silicone base Implantech Alliedsil Silicone Sheeting-Reinforced, Long Term Implantable (8” x 6”) .007 thick Catalog #701-07  10mm x 5mm sheet
$225.00 per 8 x 6 inch
$0.36 per electrode (10 mm x 5 mm)
 Thinner for sealant mixture Toluene 99.5% ACS Reagent 500mL or Xylene ACS 99.5% Catalog #179418-500 ML 0.75 mL
$25.53 per 500 mL
$0.38 per electrode
Template for perforating silicone base Cutting jig – 3D printed
(see CAD file)
NA NA
Custom-fabricated electrode: $29.25
Industry standard electrode (EP105 EMG Patch Electrode, 2 contacts, single-sided, 7mm x 4mm, MicroProbe for Life Science): $305.00
Additional Fabrication Materials 
               Quantity & price per electrode
3D printing software  Solidworks (Solidworks, 2022)
Micro-Tig welder  Micro-Tig Welder (CD1000SPM, Single Pulse Research and Light Production Resistance Spot Welder, Sunstone) SKU 301010 $3,500
Ultrasonic bath Ultrasonic bath (CPX Series Ultrasonic Bath, Fisherbrand).  15-337-403 NA
Ex Vivo Testing Materials 
            Quantity & price per electrode
Data acquisition platform and software DigitalLynx 4sX Base Cheetah version 6.0 (Neuralynx Inc.)  NA EMG acquisition hardware and software
Electrode interface board (EIB) EIB, EIB16-QC, Neuralynx Inc. 31-0603-0007 NA
Signal generator 5 MHz Function Generator, B&K Precision   4005DDS220V $387.46
Potentiostat PGSTAT1 potentiostat (EcoChemie, Utrecht, Netherlands) NA NA
Stainless steel screw Fine Science Tools 19010-00 $98
Ex Vivo Testing Materials 
            Quantity & price per electrode
Rodent treadmill  Exer 3/6 Open Treadmill, Columbus Instruments NA NA
Dental cement Excel Formula® Pourable Dental Material, St. George Technology Inc. #24211 $125.60
Light microscope Keyence BZ-X800, Keyence Corporation, Osaka, Japan  NA NA
Motion capture system Optitrack Color Camera, Optitrack, NaturalPoint Inc. NA NA
Peak detection algorithm “SciPy.signal.find_peaks – SciPy v1.8.1 Manual”, 2022 NA NA
Python software Python Software Foundation. Python Language Reference, version 3.9. Available at http://www.python.org NA NA
Rat HsdBlu: LE, Envigo 140 NA
Statistical sotware GraphPad Prism version 10.0.0 (GraphPad Software, Boston, Massachusetts USA) NA NA

Referencias

  1. Grandjean, P. A., Mortimer, J. T. Recruitment properties of monopolar and bipolar epimysial electrodes. Ann. Biomed. Eng. 14 (1), 53-66 (1986).
  2. Memberg, W. D., Stage, T. G., Kirsch, R. F. A fully implanted intramuscular bipolar myoelectric signal recording electrode. Neuromodulation J. Int. Neuromodulation Soc. 17 (8), 794-799 (2014).
  3. Loeb, G. E., Gans, C. . Electromyography for Experimentalists. , (1986).
  4. Boehler, C., Carli, S., Fadiga, L., Stieglitz, T., Asplund, M. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 15 (11), 3557-3578 (2020).
  5. Patel, P. R., et al. Insertion of linear 8.4 µm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J. Neural Eng. 12 (4), 046009 (2015).
  6. Richie, J. M., et al. Open-source toolkit: benchtop carbon fiber microelectrode array for nerve recording. J. Vis. Exp. (176), e63099 (2021).
  7. Sarolic, A., Skalic, I., Deftu, A., Sapunar, D. Impedance measurement of bipolar stimulation electrodes immersed in medium. , 1-2 (2018).
  8. Pritchett-Corning, K. R., Mulder, G. B., Luo, Y., White, W. J. Principles of rodent surgery for the New Surgeon. J. Vis. Exp.: JoVE. (47), e2586 (2011).
  9. Zealear, D., Li, Y., Huang, S. An implantable system for chronic in vivo electromyography. J. Vis. Exp. JoVE. (158), e60345 (2020).
  10. Butterfield, T. A., Leonard, T. R., Herzog, W. Differential serial sarcomere number adaptations in knee extensor muscles of rats is contraction type dependent. J. Appl. Physiol. Bethesda Md 1985. 99 (4), 1352-1358 (2005).
  11. Farago, E., MacIsaac, D., Suk, M., Chan, A. D. C. A review of techniques for surface electromyography signal quality analysis. IEEE Rev. Biomed. Eng. 16, 472-486 (2023).
  12. Raez, M. B. I., Hussain, M. S., Mohd-Yasin, F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online. 8, 11-35 (2006).
  13. Tankisi, H., et al. Standards of instrumentation of EMG. Clin. Neurophysiol. 131 (1), 243-258 (2020).
  14. Kumar, A., Accorsi, A., Younghwa, R., Mahasweta, G. Do’s and don’ts in the preparation of muscle cryosections for histological analysis. J. Vis. Exp. JoVE. (99), e52793 (2015).
  15. Wang, C., Yue, F., Kuang, S. Muscle histology characterization using H&E staining and muscle fiber type classification using immunofluorescence staining. Bio-Protoc. 7 (10), e2279 (2017).
  16. Kreifeldt, J. G. Signal versus noise characteristics of filtered EMG used as a control source. IEEE Trans. Biomed. Eng. BME-18 (1), 16-22 (1971).
  17. Farina, D., Yoshida, K., Stieglitz, T., Koch, K. P. Multichannel thin-film electrode for intramuscular electromyographic recordings. J. Appl. Physiol. 104 (3), 821-827 (2008).
  18. Muceli, S., et al. Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted muscle reinnervation. J. Neural Eng. 16 (1), 016010 (2018).
  19. Guo, L., Guvanasen, G., Tuthill, C., Nichols, T., Deweerth, S. . Characterization of a Stretchable Multielectrode Array for Epimysial Recording. , 694 (2011).
  20. Zwarts, M. J., Stegeman, D. F. Multichannel surface EMG: basic aspects and clinical utility. Muscle Nerve. 28 (1), 1-17 (2003).
  21. Koch, K. P., Leinenbach, C., Stieglitz, T. Fabrication and test of robust spherical epimysial electrodes for lower limb stimulation. Aalb. Den. , (2000).
  22. Uhlir, J. P., Triolo, R. J., Davis, J. A., Bieri, C. Performance of epimysial stimulating electrodes in the lower extremities of individuals with spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 12 (2), 279-287 (2004).
  23. Deer, T. R., et al. The appropriate use of neurostimulation: new and evolving neurostimulation therapies and applicable treatment for chronic pain and selected disease states. Neuromodulation Technol. Neural Interface. 17 (6), 599-615 (2014).
  24. Ortiz-Catalan, M., Brånemark, R., Håkansson, B., Delbeke, J. On the viability of implantable electrodes for the natural control of artificial limbs: Review and discussion. Biomed. Eng. OnLine. 11, 33 (2012).
  25. Sando, I. C., et al. Regenerative peripheral nerve interface for prostheses control: electrode comparison. J. Reconstr. Microsurg. 32 (3), 194-199 (2016).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artículo
Stoneback, L., Fullano, G. D., White, M. S., Naaz, S., Lepley, L. K. Development of a Low-cost Epimysial Electromyography Electrode: A Simplified Workflow for Fabrication and Testing. J. Vis. Exp. (206), e66744, doi:10.3791/66744 (2024).

View Video