This protocol describes the robust generation of macrophages from human induced pluripotent stem cells, and methods for their subsequent characterization. Cell surface marker expression, gene expression, and functional assays are used to assess the phenotype and function of these iPSC-derived macrophages.
Macrophages are present in most vertebrate tissues and comprise widely dispersed and heterogeneous cell populations with different functions. They are key players in health and disease, acting as phagocytes during immune defense and mediating trophic, maintenance, and repair functions. Although it has been possible to study some of the molecular processes involved in human macrophage function, it has proved difficult to apply genetic engineering techniques to primary human macrophages. This has significantly hampered our ability to interrogate the complex genetic pathways involved in macrophage biology and to generate models for specific disease states. An off-the-shelf source of human macrophages that is amenable to the vast arsenal of genetic manipulation techniques would, therefore, provide a valuable tool in this field. We present an optimized protocol that allows for the generation of macrophages from human induced pluripotent stem cells (iPSCs) in vitro. These iPSC-derived macrophages (iPSC-DMs) express human macrophage cell surface markers, including CD45, 25F9, CD163, and CD169, and our live-cell imaging functional assay demonstrates that they exhibit robust phagocytic activity. Cultured iPSC-DMs can be activated to different macrophage states that display altered gene expression and phagocytic activity by the addition of LPS and IFNg, IL4, or IL10. Thus, this system provides a platform to generate human macrophages carrying genetic alterations that model specific human disease and a source of cells for drug screening or cell therapy to treat these diseases.
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) represent a self-renewing cell source that can be differentiated to produce cells of all three germ layer lineages. Technologies that allow for the genetic manipulation of human pluripotent stem cells (PSCs), such as Zinc Finger Nuclease, TALENS, and CRISPR-Cas9, have revolutionised medical research1,2,3,4. Genetic manipulation of human PSCs is a particularly attractive strategy when the primary cell of interest is difficult to expand and/or to maintain in vitro, or is difficult to genetically manipulate, such as is the case for macrophages5,6,7,8,9. As human iPSCs can be derived from any somatic cell, they circumvent the ethical limitations associated with ESCs, and provide a strategy for delivering personalized medicine. This includes patient-specific disease modelling, drug testing, and autologous cell therapy with a reduced risk of immune rejection and infection6,8,10,11.
Protocols describing the generation of macrophages from iPSCs consist of a three-step process that includes: 1) Generation of embryoid bodies; 2) Emergence of hematopoietic cells in suspension; 3) Terminal macrophage maturation.
The formation of three-dimensional aggregates, known as embryoid bodies (EBs) initiates differentiation of iPSCs. Bone morphogenetic protein (BMP4), stem cell factor (SCF), and vascular endothelial growth factor (VEGF) are added to drive mesoderm specification and support emerging hematopoietic cells7,8,9,11,12. The differentiating cells within the EBs also initiate the activation of endogenous signalling pathways such as Wnt and Activin. Some differentiation protocols do not go through the stage of EB formation. In these cases, Wnt and Activin signalling regulators, such as recombinant human Activin A and/or Chiron are added to the differentiating iPSCs in a monolayer format13,14,15. Here, we focus on a protocol that uses EB formation. For the second step of differentiation, EBs are plated onto an adherent surface. These attached cells are then exposed to cytokines that promote the emergence of suspension cells that include hematopoietic and myeloid progenitors. In these in vitro culture conditions, interleukin-3 (IL3) likely supports hematopoietic stem-progenitor cell formation and proliferation16,17, as well as myeloid precursors proliferation and differentiation18. Macrophage colony stimulating factor (CSF1) supports the production of myeloid cells and their differentiation to macrophages19,20. During the third stage of differentiation, these suspension cells are cultured in the presence of CSF1 to support terminal macrophage maturation.
The differentiation of human iPSCs into macrophages in vitro mimics the early wave of macrophage production during development. Tissue-resident macrophages are established during embryogenesis and have a distinct developmental lineage from adult monocytes. Several studies have shown that iPSC-DMs have a gene signature that is more comparable to fetal liver-derived macrophages than blood-derived monocytes, suggesting that iPSC-DMs are more akin to tissue-resident macrophages. iPSC-DMs express higher levels of genes that encode for the secretion of proteins involved in tissue remodelling and angiogenesis and express lower levels of genes encoding for pro-inflammatory cytokine secretion and antigen presentation activities21,22. In addition, iPSC-DMs have an analogous transcription factor requirement to that of tissue-resident macrophages23,24. Using knockout iPSC cell lines that are deficient in the transcription factors RUNX1, SPI1 (PU.1), and MYB, Buchrieser et al. showed that the generation of iPSC-DMs is SPI1 and RUNX1 dependent, but MYB independent. This indicates that they are transcriptionally similar to yolk-sac derived macrophages that are generated during the first wave of hematopoiesis during development23. Therefore, it is widely accepted that iPSC-DMs represent a more appropriate cell model to study tissue-resident macrophages such as microglia14,25 and Kupffer cells11, and a more desirable source of cells that could potentially be used in therapies to repair tissues. For example, it has been shown that macrophages produced in vitro from mouse ESCs were effective in ameliorating fibrosis in a CCl4-induced liver injury model in vivo11. Furthermore, these ESC-derived macrophages were more efficient than bone marrow-derived macrophages at repopulating Kupffer cell compartments depleted of macrophages using liposomal clodronate11 in mice.
Here, we describe serum- and feeder-free protocols for the maintenance, freezing, and thawing of human iPSCs, and for the differentiation of these iPSCs into functional macrophages. This protocol is very similar to that described by Van Wilgenburg et al.12, with minor alterations including: 1) iPSC-maintenance media; 2) ROCK inhibitor is not used in the EB formation stage; 3) A mechanical approach rather than an enzymatic approach is used to generate uniform EBs from iPSC colonies; 4) The method for EB harvest and plating down is different; 5) Suspension cells are harvested 2x a week, rather than weekly; and 6) Harvested suspension cells are cultured under CSF1 for macrophage maturation for 9 days rather than 7 days. We also describe protocols used to characterize iPSC-derived macrophage phenotype and function, including analyses for gene expression (qRT-PCR), cell surface marker expression (flow cytometry), and functional assays to assess phagocytosis and polarization.
NOTE: All reagents and equipment used in this protocol are listed in Table of Materials. Media should be at 37 °C for cell culture. Media and reagents used in the differentiation protocol must be sterile.
1. Human iPSC Line Thawing and Maintenance
2. Human iPSC Line Freezing
3. Human iPSC Differentiation to Macrophages
NOTE: A schematic summary of the macrophage differentiation protocol is depicted in Figure 1.
4. iPSC-derived Macrophages Quality Control Check
5. High Throughput Phagocytosis Assay
Differentiation progression, macrophage number, and morphology
The results presented are from the differentiation of the SFCi55 human iPSC line that has been described and used in a number of studies8,9,10,26. The process of IPSC differentiation towards macrophages could be monitored by optical microscopy. iPSC colonies, embryoid bodies (EBs), hematopoietic suspension cells, and mature macrophages were morphologically distinct (Figure 2A). Mature macrophage morphology could be further validated by staining of centrifuged cytospin preparations. IPSC-derived macrophages were large, and had single small oval-shaped nuclei and abundant cytoplasm containing many vesicles (Figure 2B).
The first 2 weeks of hematopoietic suspension cells harvests (days 16–28) of one full 6 well plate of EBs contained, on average, 2.59 x 106 ± 0.54 cells. After day 28, an average of 4.64 x 106 ± 0.94 of suspension cells per 6 well plate of EBs were produced. From day 80 onwards, the number of suspension cells started to drop as the EBs become exhausted (Figure 2C). It is recommended to stop the differentiation protocol after numbers drop below 3 x 106 precursors per harvest per 6 well plate of EBs.
IPSC-derived macrophage cell surface markers expression
Flow cytometry remains the most common method used to assess the phenotype of human macrophages. The gating strategy to assess cell surface marker expression consists of gating the main population of cells using physical parameters like size and granularity, followed by gating single cells and then live cells (Figure 3A). Mature iPSC-derived macrophages should express the lineage marker CD45 and macrophage maturation marker 25F9, and be negative for monocyte/immature macrophage marker CD93. This is consistent with our observations (Figure 3A). IPSC-derived macrophages were also positive for lineage myeloid markers CD11b, CD14, CD43, CD64, CD115, CD163, and CD169 (Figure 3B). They were positive for immune-modulation marker CD86, and a small proportion of them expressed chemokine receptors CX3CR1, CCR2, CCR5, and CCR8 at the naive state (Figure 3B). The plots were obtained from data previously published by our laboratory8.
iPSC-derived macrophages phagocytosis and polarization
One of the key features of macrophages in host defense and tissue homeostasis is their ability to phagocytose pathogens, apoptotic cells, and debris27. The rate of phagocytosis is closely associated with specific phenotypic states28. To evaluate iPSC-DM phagocytic ability, we used a high content imaging system approach8,9,11 that makes use of the PerkinElmer Operetta Microscope and pHrodo Zymosan bioparticles (pH-sensitive dye conjugates). Bioparticles were nonfluorescent when added to the cultures (Figure 4A) but fluoresced bright green in the intracellular acidic pH (Figure 4B). The live-imaging Operetta microscope was set to image every 5 min after the addition of beads for a total time of 175 min. A high throughput and unbiased image analysis pipeline was then used in the Columbus platform to quantify activity in terms of the phagocytic fraction that represents the proportion of cells that phagocytosed beads and the phagocytic index that is a measure of the number of beads that each cell ingested.
Macrophages can respond and change their phenotype depending on environmental cues. To assess their ability to react and change upon environmental stimuli, iPSC-DMs can be treated with LPS and IFNg, IL4, or IL10. After 48 h of treatment, they changed phenotype, herein referred to as M (LPS + IFNg), M (IL4), and M (IL10), respectively29. Gene expression analysis is a useful tool to test the polarization status of macrophages. Upon LPS and IFNg stimulation, macrophages upregulated mRNA expression of genes CD40, VCAM1, and TNFA (Figure 5A). Upon IL4 stimulation, cells upregulated mRNA expression of genes CD68, CD84, and MRC1 (Figure 5B). Upon IL10 stimulation, iPSC-DMs upregulated expression of MRC1 (Figure 5B). In terms of phagocytosis, macrophages treated with LPS + IFNg or IL4 showed a significantly lower percentage of phagocytic cells when compared to naive macrophages. iPSC-DMs treated with IL10 showed an increased percentage of phagocytic cells and phagocytic index (Figure 5C–E).
Figure 1: Graphic summary of iPSC differentiation to mature functional macrophages. Diagram drawn with Biorender. Please click here to view a larger version of this figure.
Figure 2: iPSC differentiation towards macrophages and iPSC-DM number and morphology. (A) Bright Field images obtained from (left to right): an IPSC colony, embryoid bodies (EBs), harvested suspension cells, and mature macrophages. Scale bar = 100 μm. (B) Image of macrophage cytospins stained with Kwik-diff kit. Scale bar = 25 μm. (C) Number of suspension cells collected per harvest per one 6 well plate of EBs. Plot shows mean + SEM; (n = 6 biologically independent experiments). Please click here to view a larger version of this figure.
Figure 3: Macrophage cell surface marker phenotype. (A) Gating strategy for analysis of mature iPSC-derived macrophages. Single, live cells were gated, then analysed for the expression of cell surface markers CD45, CD93, and 25F9. Gates for the cell surface markers were drawn using fluorescence minus one (FMO) controls. (B) Representative flow cytometry histograms for single stains of iPSC-DMs (blue) and isotype controls (grey) for lineage and myeloid markers, immune-modulation markers, maturation markers, and chemokine receptors. Plots are representative of n = 5 biologically independent experiments for all lineage and myeloid markers, except CD105 and CD206 (n = 3); maturation markers (n = 5); immune-modulation markers (n = 3); and chemokine receptors (n = 3). Plots use previously published data8. Please click here to view a larger version of this figure.
Figure 4: IPSC-DM polarization and phagocytosis assays. Representative images of iPSC-DMs (A) immediately after the addition of Zymosan pHrodo green beads and (B) 175 min after the addition of beads. Blue represents the cells’ nuclei; red represents the cells’ cytoplasm. Green represents ingested beads (Scale bar = 20 μm). (C) Fraction of phagocytic macrophages and (D) phagocytic index/green intensity per phagocytic macrophage over time in the naive state (n = 6 biologically independent experiments). Plots show the mean value and the bars represent the SEM. Plots use previously published data8. Please click here to view a larger version of this figure.
Figure 5: Evaluation of iPSC-DM polarization states. Relative quantification of RT-PCR analyses of naive and polarized iPSC-DMs to assess the expression of (A) M(LPS+IFNϒ); (B) M(IL4) and M (IL10)-associated genes (n = 6 biologically independent experiments; One-way ANOVA and Holm-Sidak's multiple comparisons post-test. Polarized groups were statistically compared to the naive group only). Plots show the mean value, and the error bars represent the standard deviation. ND in plots = transcript not detected. Data for these plots were previously published8. (C) Representative images of iPSC-DMs 175 min after the addition of pHrodo beads from iPSC-DMs treated with (left to right): no cytokines, LPS+IFN-Y, IL-4, and IL-10 (Scale bar = 20 μm). (D) Fraction of phagocytic macrophages and (E) phagocytic index/green intensity per phagocytic macrophage in naive and polarized macrophage treatments 175 min after the addition of beads (n = 12 biologically independent experiments, one-way ANOVA and Holm-Sidak's multiple comparisons post-test. Polarized groups were statistically compared to the naive group only). Plots show the mean value and the error bars represent the standard deviation (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). Please click here to view a larger version of this figure.
The protocol for the generation of iPSC-DMs described here is robust and allows for the production of a large number of homogeneous cells from a relatively small number of iPSCs. Following the initial differentiation of approximately 1 x 106 iPSCs, the subsequent cultures can be harvested every 4 days for up to 2–3 months, resulting in the production of at least 6.5 x 107 macrophages over that time. These in vitro-generated human macrophages are morphologically similar to primary human macrophages, express the key macrophage cell surface markers, and exhibit phagocytic activity. The protocol for macrophage differentiation is reproducible and can be applied to other hiPSC and hESC cell lines, but the precise timing of the first harvest of the macrophage precursors and the absolute numbers of cells that can be generated varies between iPSC lines.
It has been demonstrated that macrophages can be generated from iPSCs that have been genetically manipulated. For example, a transgene cassette consisting of the fluorescent reporter ZsGreen under the control of the constitutive CAG promoter was inserted into the AAVS1 locus of the SFCi55 iPSC line, and it was subsequently shown that this iPSC line could be differentiated into ZsGreen-expressing macrophages8. These fluorescent macrophages could be used in the future to track the migration and stability of therapeutic macrophages in models of disease. In another study, macrophages were generated from an iPSC line that had been genetically manipulated to express a tamoxifen-induced transcription factor, KLF1. Activation of KLF1 in iPSC-derived macrophages resulted in the production of macrophages with a phenotype comparable to macrophages of the erythroid island9. Potentially, this strategy could be used to genetically program iPSC-derived macrophages into phenotypes associated with other tissue-specific macrophage populations such as Kupffer cells of the liver or Langerhans cells of the skin. This would be possible once the key transcription factors that define these cell types are identified.
In terms of the protocol, it is very important to note that the condition of the starting population of iPSCs is critical for successful differentiation. Human iPSC cultures can be overrun with karyotypically abnormal subpopulations over several passages, so robust curation of iPSC stocks and large batch master stocks subjected to genome quality control is recommended. In our hands, the maintenance protocols described here can maintain karyotypically normal iPSCs for up to 2 months in continuous culture, but this may vary for different cell lines and in different laboratories. If problems are encountered, it is advisable to use a fresh vial of undifferentiated iPSCs for each differentiation experiment. In addition, the starting culture of undifferentiated iPSCs should be no more than 80% confluent. At the EB plating stage, only 10–15 EBs should be plated per well of a 6 well tissue culture plate, and it is critical that these EBs are spread out evenly across the well. A higher number of EBs and/or clumping of EBs in the center of the well had a negative effect on the numbers of macrophages generated. Care should be taken when replenishing media and harvesting monocyte-like progenitor suspension cells from the EB cultures to avoid disturbing the adhesion of EBs to the surface of the coated culture plates. The number of hematopoietic suspension cells produced gradually increases with each harvest, with optimal production between days 40–72 of differentiation (Figure 2). Production progressively declines after day 68 and plates tend to exhaust after 2.5 months, although the precise timing can vary depending on the iPSC line.
One limitation of our protocol is that it has not been possible to cryopreserve the hematopoietic suspension cells generated at the end of Stage 2. Protocols that rely on the exogenous activation of WNT report about a 40% recovery rate after cryopreservation, but these protocols report only one cell harvest, so the absolute number of macrophages generated is low30. The protocol described here, inducing endogenous signalling via the formation of EBs, can be harvested biweekly, producing a much higher total macrophage yield.
In summary, we present a detailed protocol for the production of functional iPSC-derived macrophages. Setting up in vitro experiments with iPSC-derived macrophages to study macrophage biology in health and disease has many advantages over experiments with monocyte-derived macrophages (MDMs). These advantages include the ease of accessibility to the material (e.g., no donors are required), very large amounts of macrophages can be produced, and it is feasible and relatively straightforward to produce genetically modified macrophages. Furthermore, iPSC-derived macrophages might be better resource for the study of tissue-resident macrophage biology.
The authors have nothing to disclose.
We thank Fiona Rossi and Claire Cryer for assistance with flow cytometry, Eoghan O’Duibhir and Bertrand Vernay with microscopy. This work was funded by CONACYT (M.L.-Y.), Wellcome Trust (102610) and Innovate UK (L.M.F), Wellcome Trust PhD studentship (A.M), MRC Precision Medicine Studentship (T.V). L.C. and J.W.P. were supported by Wellcome Trust (101067/Z/13/Z), Medical Research Council (MR/N022556/1), and COST Action BM1404 Mye-EUNITER (http://www.mye-euniter.eu).
2-Mercaptoethanol (50 mM) | Invitrogen | 31350010 | |
Abtibody CD64-APC -CY7 | Biolegend | 305026 | Dilution factor: 1:100 |
Antibody 25F9-EFLUOR 660 | Ebioscience | 15599866 | Dilution factor: 1:20 |
Antibody CCR2-PE-Cy7 | Biolegend | 357212 | Dilution factor: 1:100 |
Antibody CCR5 PE | Biolegend | 313707 | Dilution factor: 1:100 |
Antibody CCR8 PE | Biolegend | 360603 | Dilution factor: 1:100 |
Antibody CD11b-PE | Biolegend | 301305 | Dilution factor: 1:50 |
Antibody CD14-APC | Ebioscience | 10669167 | Dilution factor: 1:20 |
Antibody CD163-PE-CY7 | BIolegend | 333614 | Dilution factor: 1:25 |
Antibody CD169-APC | Biolegend | 346007 | Dilution factor: 1:25 |
Antibody CD206-PE | Biolegend | 321106 | Dilution factor: 1:100 |
Antibody CD209-PE-CY7 | Biolegend | 3310114 | Dilution factor: 1:100 |
Antibody CD274-PE-CY7 | Biolegend | 329718 | Dilution factor: 1:100 |
Antibody CD43-PE | Ebioscience | 10854419 | Dilution factor: 1:100 |
Antibody CD45-APC | Ebioscience | 15577936 | Dilution factor: 1:20 |
Antibody CD86-APC | Biolegend | 305412 | Dilution factor: 1:100 |
Antibody CD93-PE | Ebioscience | 10804637 | Dilution factor: 1:100 |
Antibody CX3CR1-PE | Biolegend | 307650 | Dilution factor: 1:100 |
Antibody HLA-DR-BV650 | Biolegend | 307650 | Dilution factor: 1:100 |
Antiboy CD115-PE | Biolegend | 347308 | Dilution factor: 1:40 |
Cell Dissociation Buffer, enzyme free | Thermofisher | 13151014 | |
Cell Dissociation Buffer, enzyme-free, PBS | Gibco | 13151014 | |
CellCarrier-96 Ultra Microplates, tissue culture treated, black, 96-well | PerkinElmer | 6055302 | |
CellMask Deep Red Plasma Membrane Stain | Thermofisher | C10046 | Cryopreservation media |
Cryostor CS10 | Sigma | C2874 | |
CTS CELLstart Substrate | Invitrogen | A1014201 | Stem cell substrate |
DAPI | Merck | D9542-1MG | Final concentration 1 μg/mL |
DPBS, calcium, magnesium (500ml) | Thermofisher | 14040091 | |
FcR Blocking Reagent, human | MACS Miltenyi Biotec | 130-059-901 | |
FGF-Basic (AA 10-155) Recombinant Human Protein | Thermofisher | PHG0021 | |
GlutaMAX Supplement | Thermofisher | 35050061 | |
Human Recombinant IFNY | Thermofisher | 14-8319-80 | |
Human Serum Albuminum | Irvine Scientific | 9988 | |
Lipopolysaccharide (LPS) from E. Coli | Sigma | L2630 | |
NucBlue (Hoechst33342) | Thermofisher | R37605 | |
pHrodo Green Zymosan Bioparticles Conjugate for Phagocytosis | Thermofisher | P35365 | |
Porcine Skin Gelatin | Sigma | G9136 | |
Recombinant Human BMP4 Protein | R&D | 314-BP-010 | |
Recombinant Human IL10 | Preprotech | 200-10 | |
Recombinant Human IL3 | Preprotech | 200-03-10 | |
Recombinant Human IL4 | Preprotech | 200-04 | |
Recombinant Human MCSF (carrier-free) 100ug | Biolegend | 574806 | |
Recombinant Human VEGF Protein | R&D | 293-VE-010 | |
Rock Inhibitor Y-27632 | Merck | SCM075 | |
SCF (C-Kit Ligand) Recombinant Human Protein | Thermofisher | PHC2111 | |
StemPro hESC SFM | Thermofisher | A1000701 | |
StemPro EZPassage Disposable Stem Cell Passaging Tool | Thermofisher | 23181010 | |
Ultralow attachment plates: Cell culture multi-well plate, 6 well, cell star cell repellent surface | Greiner | 657970 | |
UltraPure 0.5 M EDTA, pH 8.0 | Invitrogen | 15575020 | |
X-Vivo 15 500 mL bottle | Lonza | BE02-060F |