Summary

Opsono-坚持性检测,以评估疫苗开发中针对 无烟杆菌 和其他封装病原体的功能抗体

Published: May 19, 2020
doi:

Summary

opsono-依从性测定是分析抗体在疫苗开发中的opsonic功能的替代方法。

Abstract

蛋白石粘性检测是一种功能性检测,它列举了细菌病原体与专业噬细胞的附着。因为坚持是法戈西病和杀戮的必要条件,因此测定是奥普索诺-法细胞杀菌检测的替代方法。opsono-依从性检测的一个优点是可以选择使用灭活病原体和哺乳动物细胞系,从而允许跨多个实验进行标准化。在检测中使用灭活病原体也有助于生物安全3级传染性剂和其他致命病原体的工作。在我们的工作中,opsono-依从性检测用于评估抗体的功能能力,从用炭热胶囊疫苗免疫的动物血清,到诱导固定 杆菌无烟杆菌 与小鼠大噬细胞系RAW 264.7的粘合。自动荧光显微镜用于捕捉巴西利粘合巨噬细胞的图像。增加依从性与血清中是否存在抗胶囊抗体有关。表现出高血清抗胶囊抗体浓度的非人类灵长类动物受到保护,免受炭热挑战。因此,蛋白石粘性检测可用于阐明血清中抗原特异性抗体的生物功能,评估疫苗候选物和其他治疗方法的疗效,并作为免疫力的可能相关性。

Introduction

病原体的识别、坚持、内化和退化是噬菌体细胞增多症1的组成部分,菌体是伊利亚·梅奇尼科夫在1883年第2、3年首次描述的宿主先天免疫反应的显著途径。噬细胞白细胞以及免疫系统的其他细胞在选择靶点时具有高度歧视性:他们能够区分”传染性非自我”和”非传染性自我”通过病原体相关的分子模式,通过他们的模式识别受体(PRR)4,5的剧目。宿主识别病原体也可能发生与宿主蛋白的结合,如补充和抗体6。这个过程,称为opsoning,用这些分子涂覆病原体,在与噬菌体细胞6的opsonic受体(例如补充和Fc受体)结合后增强内化。病原体要粘附在噬细胞上,就必须将多种受体与其同质配体集体结合。只有这样,坚持才能触发和维持主机单元内的信号级联,以启动内化6。

由于噬细胞病在清除病原体和预防感染方面的重要性,细胞外病原体已经开发出许多方法来颠覆这一过程,以延长其生存时间。一种重要的策略是生产一种离子聚合物(例如多糖或多氨基酸)胶囊,这种胶囊由于其电荷而具有抗噬菌性,免疫力差,并且保护细菌包络上的分子免受PRR6、7的侵害。病原体,如隐球菌新福尔曼肺炎链球菌有由糖化物组成的胶囊,而葡萄球菌表皮和一些菌物种产生多ɣ谷氨酸(PGGA)7,8。然而,其他病原体产生的胶囊类似于非传染性自我。例如,链球菌和B.cereus的致病菌株有一个透明质酸胶囊,它不仅是抗噬菌体,而且可能不被免疫系统9,10识别为异物。

胶囊与载体蛋白的结合,将他们从贫乏的T独立抗原转化为高致免疫性T依赖抗原,可诱导高血清抗胶囊抗体滴度11,12。该策略用于针对肺炎流感嗜血杆菌奈塞里亚脑膜肽11的许可疫苗。抗胶囊抗体的手术活动通常由奥普索诺-法果细胞杀伤性检测(OPKA)13、14、15、16进行评估。这些检测测试功能抗体是否可以触发噬细胞增多症和杀死14。然而,使用带有传染性病原体的OPKA,如一级生物选择剂和毒素(BSAT),包括B.无烟体17,是危险的,并带来安全风险:这些检测需要广泛处理选择的代理。选择剂处理只能在受限生物安全级别 3 (BSL-3) 实验室进行:由于必须遵循许多安全和安保预防措施,这些领域的工作需要长期的操作程序。BSL-3实验室通常也没有配备用于OPKA工作的专用设备,如显微镜和细胞计。因此,我们开发了一种基于使用灭活细菌18,19的替代检测方法。我们称之为一种不依赖于内化和杀戮的opsono-依从性检测(OAA),作为检测输出:相反,对非活化灭活病原体的坚持被用作噬细胞病的指数。机械上,OAA是一个合适的替代品,因为坚持发生先验,并与内化和细胞内杀密切交织在一起。从生物安全的角度来看,OAA 是首选,因为它需要最少的传染性剂处理,实验时间比 OPKA 短,并且可以在 BSL-2 实验室中进行,在产生和转移灭活病原体库存后进行。

我们证明利用OAA来检查在非人类灵长类动物(NHPs)的血清中发现的抗胶囊抗体的opsonic功能,这种抗胶囊抗体是用胶囊结合而接种的[即从B.无烟菌结合到奈西里亚脑膜肽的外膜蛋白复合物(OMPC)的PGGA]20。血清通配的巴西利被孵育与附体鼠标巨噬细胞线,RAW 264.7。固定后,细胞单层和附体巴西利通过荧光显微镜成像。与对照血清20相比,当用用胶囊结合接种的NHPs的血清孵化时,细菌依从性增加。坚持与炭热挑战20,21的生存有关。因此,OAA的使用具有抗胶囊抗体的功能,大大方便了疫苗候选剂的测试。

Protocol

根据《动物福利法》、《公共卫生服务政策》和其他有关动物和涉及动物的实验的联邦法规和条例,此处描述的研究是根据机构动物护理和使用委员会批准的议定书进行的。进行这项研究的设施由国际实验室动物护理评估和认证协会认可,并遵守2011年国家研究理事会《实验室动物护理和使用指南》中规定的原则。 1. 细胞系的培养和维护,RAW 264.7 <p class="jov…

Representative Results

本节显示了在OAA实验中收集的具有代表性的显微图,以及显示OAA可用于检查抗体的生物功能的结果。在这里,该检测被成功地用于评估炭热疫苗候选的疗效。验证囊体上的封装状态至关重要,因为很少或根本没有封装会导致它们粘附在宿主细胞上,从而产生高背景。 图 1 是 B. 无烟艾 姆斯的图像,上面印有印度墨水,以检查封装。OAA 要求照亮多个相邻的视场,如果使…

Discussion

胶囊疫苗已被证明对许多细菌病原体有效,许多疫苗获准用于人类25、26、27。这些疫苗通过产生针对胶囊的抗体而起作用,其中许多研究使用OPKA来显示抗体13、14、16、28、29的蛋白细胞功能。出于对生物?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

蔡美利、查博特和弗里德兰德设计了手稿中描述的程序。蔡美利和T·普特蒙-泰勒进行了实验。D. 查博特进行了数据分析。蔡先生写了手稿。

作者感谢凯尔·菲茨出色的技术援助。

这项工作得到了国防威胁减少局授予煤层气的支持。VAXBT.03.10.RD.015,计划编号921175。

意见、解释、结论和建议是作者的意见、解释、结论和建议,不一定得到美国陆军的赞同。本出版物的内容不一定反映国防部的观点或政策,也不提及贸易名称、商业产品或组织,暗示美国政府的认可。

Materials

0.20 µm syringe filter (25mm, regenerated cellulose) Corning, Corning, NY 431222
10 mL syringe (Luer-Lok tip) BD, Franklin Lakes, NJ 302995
15µ 96 well black plates (plate #1 for imaging) In Vitro Scientific, Sunnyvale, CA P96-1-N
16% paraformaldehyde Electron Microscopy Science, Hatfield, PA 15710
75 cm sq. tissue culture treated flask Corning, Corning, NY 430641
Agar (powder) Sigma-Aldrich, St. Louis, MO A1296
Baby Rabbit Complement Cedarlane Labs, Burlington, NC CL3441
Bacto Yeast Extract BD, Sparks, MD 288620
BBL Brain Heart Infusion (BHI) BD, Sparks, MD 211059
Blood Agar (TSA with Sheep Blood) plates Remel, Lenexa, KS R01198
Cell scraper Sarstedt, Newton, NC 83.183
Costar 96 well cell culture plates (plates #2 & 3 for dilutions) Corning, Corning, NY 3596
Cover glass Electron Microscopy Science, Hatfield, PA 72200-10
Difco Nutrient Broth BD, Sparks, MD 234000
Dulbecco's Modified Eagle Medium (DMEM), high glucose Gibco, Thermo Fisher Scientific, Waltham, MA 11965-092 contains 4500 mg/L glucose, 4 mM L-glutamine, Phenol Red
EVOS FL Auto Cell Imaging System (fluorescence microscope) Life Technologies, Thermo Fisher Scientific, Waltham, MA AMAFD1000
Fetal Bovine Serum Hyclone, GE Healthcare Life Sciences, South Logan, UT SH30071.03 not gamma irradiated, not heat inactivated
Fluorescein isothiocyanate Invitrogen, Thermo Fisher Scientific, Waltham, MA F143
HCS Cell Mask Orange Cell Stain Invitrogen, Thermo Fisher Scientific, Waltham, MA H32713
hemocytometer (Improved Neubauer) Hausser Scientific, Horsham, PA 3900
India Ink solution BD, Sparks, MD 261194
L- glutamine (200 mM) Gibco, Thermo Fisher Scientific, Waltham MA 25030081 supplement medium with additional 2mM L-glutamine
Nikon Eclipse TE2000-U (inverted compound microscope) Nikon Instruments, Melville, NY TE2000
PBS without Calcium or Magnesium Lonza, Walkersville, MD 17-516F
Penicillin-Streptomycin Solution, 100x Hyclone, GE Healthcare Life Sciences, South Logan, UT SV30010
petri dishes (100 x 15 mm) Falcon, Corning, Durham, NC 351029 for agar plates
RAW 264.7 macrophage cell line (Tib47) ATCC, Manassas, VA ATCC TIB-71
Slides VWR, Radnor, PA 16004-422
Sodium Bicarbonate Sigma-Aldrich, St. Louis, MO S5761
Trypan Blue Solution (0.4%) Sigma-Aldrich, St. Louis, MO T8154
Zeiss 700 Laser Scanning Microscopy (confocal microscope) Carl Zeiss Microimaging, Thornwood, NY 4109001865956000

Referencias

  1. Walters, M. N., Papadimitriou, J. M. Phagocytosis: a review. CRC Critical Reviews in Toxicology. 5 (4), 377-421 (1978).
  2. Metschnikoff, E. Untersuchurgen uber die intracellulare Verdauung, bei wirbellosen Thieren. Arbeiten aus dem Zoologischen Instituten der Universität Wien. 5, 144 (1883).
  3. Tauber, A. I. Metchnikoff and the phagocytosis theory. Nature Reviews Molecular Cell Biology. 4 (11), 897-901 (2003).
  4. Janeway, C. A. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunology Today. 13 (1), 11-16 (1992).
  5. Kumagai, Y., Akira, S. Identification and functions of pattern-recognition receptors. Journal of Allergy and Clinical Immunology. 125 (5), 985-992 (2010).
  6. Flannagan, R. S., Jaumouille, V., Grinstein, S. The cell biology of phagocytosis. Annual Review of Pathology. 7, 61-98 (2012).
  7. Candela, T., Fouet, A. Poly-gamma-glutamate in bacteria. Molecular Microbiology. 60 (5), 1091-1098 (2006).
  8. Kocianova, S., et al. Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. Journal of Clinical Investigation. 115 (3), 688-694 (2005).
  9. Rothbard, S. Protective effect of hyaluronidase and type-specific anti-M serum on experimental group A Streptococcus infection in mice. Journal of Experimental Medicine. 88 (3), 325-342 (1948).
  10. Oh, S. Y., Budzik, J. M., Garufi, G., Schneewind, O. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Molecular Microbiology. 80 (2), 455-470 (2011).
  11. Knuf, M., Kowalzik, F., Kieninger, D. Comparative effects of carrier proteins on vaccine-induced immune response. Vaccine. 29 (31), 4881-4890 (2011).
  12. Wang, T. T., Lucas, A. H. The capsule of Bacillus anthracis behaves as a thymus-independent type 2 antigen. Infection & Immunity. 72 (9), 5460-5463 (2004).
  13. Vogel, L., et al. Quantitative flow cytometric analysis of opsonophagocytosis and killing of nonencapsulated Haemophilus influenzae by human polymorphonuclear leukocytes. Clinical and Diagnostic Laboratory Immunology. 1 (4), 394-400 (1994).
  14. Salehi, S., Hohn, C. M., Penfound, T. A., Dale, J. B. Development of an Opsonophagocytic Killing Assay Using HL-60 Cells for Detection of Functional Antibodies against Streptococcus pyogenes. mSphere. 3 (6), 00617-00618 (2018).
  15. Wang, Y., et al. Novel Immunoprotective Proteins of Streptococcus pneumoniae Identified by Opsonophagocytosis Killing Screen. Infection & Immunity. 86 (9), (2018).
  16. Humphries, H. E., et al. Seroprevalence of Antibody-Mediated, Complement-Dependent Opsonophagocytic Activity against Neisseria meningitidis Serogroup B in England. Clinical and Vaccine Immunology. 22 (5), 503-509 (2015).
  17. Jansen, W. T., et al. Use of highly encapsulated Streptococcus pneumoniae strains in a flow-cytometric assay for assessment of the phagocytic capacity of serotype-specific antibodies. Clinical and Diagnostic Laboratory Immunology. 5 (5), 703-710 (1998).
  18. Wang, T. T., Fellows, P. F., Leighton, T. J., Lucas, A. H. Induction of opsonic antibodies to the gamma-D-glutamic acid capsule of Bacillus anthracis by immunization with a synthetic peptide-carrier protein conjugate. FEMS Immunology and Medical Microbiology. 40 (3), 231-237 (2004).
  19. Chabot, D. J., et al. Protection of rhesus macaques against inhalational anthrax with a Bacillus anthracis capsule conjugate vaccine. Vaccine. 34 (34), 4012-4016 (2016).
  20. Chabot, D. J., et al. Efficacy of a capsule conjugate vaccine against inhalational anthrax in rabbits and monkeys. Vaccine. 30 (5), 846-852 (2012).
  21. Chua, J., et al. Formaldehyde and Glutaraldehyde Inactivation of Bacterial Tier 1 Select Agents in Tissues. Emerging Infectious Diseases. 25 (5), 919-926 (2019).
  22. . Guide for the Care and Use of Laboratory Animals (Eighth Edition) Available from: https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf (2011)
  23. Durando, P., et al. Experience with pneumococcal polysaccharide conjugate vaccine (conjugated to CRM197 carrier protein) in children and adults. Clinical Microbiology and Infection. 19, 1-9 (2013).
  24. Adams, W. G., et al. Decline of childhood Haemophilus influenzae type b (Hib) disease in the Hib vaccine era. JAMA. 269 (2), 221-226 (1993).
  25. Balmer, P., Borrow, R., Miller, E. Impact of meningococcal C conjugate vaccine in the UK. Journal of Medical Microbiology. 51 (9), 717-722 (2002).
  26. Chen, M., et al. Induction of opsonophagocytic killing activity with pneumococcal conjugate vaccine in human immunodeficiency virus-infected Ugandan adults. Vaccine. 26 (38), 4962-4968 (2008).
  27. Paschall, A. V., Middleton, D. R., Avci, F. Y. Opsonophagocytic Killing Assay to Assess Immunological Responses Against Bacterial Pathogens. Journal of Visualized Experiments. (146), e59400 (2019).
  28. Ezzell, J. W., Welkos, S. L. The capsule of Bacillus anthracis, a review. Journal of Applied Microbiology. 87 (2), 250 (1999).
  29. Hanna, P. C., Acosta, D., Collier, R. J. On the role of macrophages in anthrax. Proceedings of the National Academies of Sciences of the United States of America. 90 (21), 10198-10201 (1993).
  30. Fleck, R. A., Romero-Steiner, S., Nahm, M. H. Use of HL-60 cell line to measure opsonic capacity of pneumococcal antibodies. Clinical and Diagnostic Laboratory Immunology. 12 (1), 19-27 (2005).
  31. Chua, J., Deretic, V. Mycobacterium tuberculosis reprograms waves of phosphatidylinositol 3-phosphate on phagosomal organelles. Journal of Biological Chemistry. 279 (35), 36982-36992 (2004).
  32. Chua, J., et al. pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infection & Immunity. 85 (1), (2017).
  33. Ober, R. J., Radu, C. G., Ghetie, V., Ward, E. S. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. International Immunology. 13 (12), 1551-1559 (2001).
  34. Sorman, A., Zhang, L., Ding, Z., Heyman, B. How antibodies use complement to regulate antibody responses. Molecular Immunology. 61 (2), 79-88 (2014).
  35. Henckaerts, I., Durant, N., De Grave, D., Schuerman, L., Poolman, J. Validation of a routine opsonophagocytosis assay to predict invasive pneumococcal disease efficacy of conjugate vaccine in children. Vaccine. 25 (13), 2518-2527 (2007).
  36. Wolf, J. J. . Special Considerations for the Nonclinical Safety Assessment of Vaccines. , 243-255 (2013).

Play Video

Citar este artículo
Chua, J., Chabot, D. J., Putmon-Taylor, T., Friedlander, A. M. Opsono-Adherence Assay to Evaluate Functional Antibodies in Vaccine Development Against Bacillus anthracis and Other Encapsulated Pathogens. J. Vis. Exp. (159), e60873, doi:10.3791/60873 (2020).

View Video