Presented here is a protocol for the effective suppression of hepatitis B virus (HBV) replication in mice by utilizing adoptive cell transfer (ACT) of stem cell-derived viral antigen (Ag)-specific T lymphocytes. This procedure may be adapted for potential ACT-based immunotherapy of HBV infection.
Hepatitis B virus (HBV) infection is a global health issue. With over 350 million people affected worldwide, HBV infection remains the leading cause of liver cancer. This is a major concern, especially in developing countries. Failure of the immune system to mount an effective response against HBV leads to chronic infection. Although HBV vaccine is present and novel antiviral medicines are being created, eradication of virus-reservoir cells remains a major health topic. Described here is a method for the generation of viral antigen (Ag) -specific CD8+ cytotoxic T lymphocytes (CTLs) derived from induced pluripotent stem cells (iPSCs) (i.e., iPSC-CTLs), which have the ability to suppress HBV replication. HBV replication is efficiently induced in mice through hydrodynamic injection of an HBV expression plasmid, pAAV/HBV1.2, into the liver. Then, HBV surface Ag-specific mouse iPSC-CTLs are adoptively transferred, which greatly suppresses HBV replication in the liver and blood as well as prevents HBV surface Ag expression in hepatocytes. This method demonstrates HBV replication in mice after hydrodynamic injection and that stem cell-derived viral Ag-specific CTLs can suppress HBV replication. This protocol provides a useful method for HBV immunotherapy.
Following acute infection, the adaptive immune system (i.e., humoral and cellular immunity) controls the bulk of acute HBV-related hepatitis. Still, a number of people in the HBV-endemic regions cannot eliminate the viruses and subsequently convert as chronic individuals. More than 25% of chronic patients (>250 million people) worldwide develop progressive liver disease, resulting in liver cirrhosis and/or hepatocellular carcinoma (HCC)1. As a result, eradication of insistently infected cells remains a general healthiness problem, even though there is an available vaccine2 and numerous antiviral medicines are under development. Standard treatment for HBV infection includes IFN-α, nucleoside, and nucleotide analogues. These agents have direct antiviral activity and immune modulatory capacities. Nevertheless, seroconversion of HBe antigen (Ag)+ carriers with anti-HBe antibody (Ab) and loss of serum HBV deoxyribonucleic acid (DNA) appear individually in approximately 20% of treated patients, and whole immunological control of the virus verified by the deprivation of the HBsAg is no more than 5%3. Moreover, the response to treatment is often not durable. Prophylactic vaccination with recombinant HBs Ag is highly effective in preventing infection, but therapeutic HBs Ag vaccination is not effective. Clearly, T cell-mediated immune responses play a critical role in controlling HBV infection and liver impairment; however, in chronic hepatitis patients, HBV-reactive T cells are often deleted, dysfunctional, or convert exhausted4,5,6. Consequently, in individuals with persistent HBV infection, no attempts to reinstate HBV-specific immunity (i.e., T cell-based immunity) by means of anti-viral remedy, immuno-modulatory cytokines, or curative immunization have achieved success.
Adoptive cell transfer (ACT) of HBV Ag-specific T cells is an efficient treatment directed to eventually eradicate remaining hepatocytes wih HBV7,8. ACT of HBV-specific CTLs into HBV-infected mice has been shown to cause transient, mild hepatitis, and a dramatic drop in HBV ribonucleic acid (RNA) transcripts in hepatocytes. In these studies, CTLs did not inhibit transcription of HBV genes but enhanced the degradation of HBV transcripts9. HBV-specific CTLs are important to prevent viral infection and mediate the clearance of HBV10,11. For ACT-based remedies, in vitro expansion of HBV-specific T cells with a high reactivity for in vivo resettlement has been suggested to be an ideal method12,13,14; nevertheless, the present approaches are restricted regarding their abilities to generate, separate, and grow appropriate quantities and qualities of HBV-specific T cells from patients for the potential therapies.
Although clinical trials present safety, practicability, and prospective therapeutic activity of cell-based treatments by means of engineered T cells that are specific to HBV virus-infected hepatocytes, there are worries about the unfavorable effects occurring from autoimmune responses because of cross-reactivity from mispairing T cell receptor (TCR)15,16, off-target Ag recognition by non-specific TCR17 and on-target off-toxicity by a chimeric Ag receptor (CAR)18,19 with healthy tissues. Currently, the genetically modified T cells, which only have short-term persistence in vivo, are usually intermediate or later effector T cells. To date, pluripotent stem cells (PSCs) are the only source available to generate high numbers of naive single-type Ag-specific T cells20,21,22,23. Induced PSCs (iPSCs) are simply converted from a patient’s somatic cells through the use of gene transduction of several transcription factors. As a result, the iPSCs have similar characteristics as those of embryonic stem cells (ESCs)24. Owing to the flexibility and possibility for the infinite ability to self-renew, in addition to tissue replacement, iPSC-based treatments may be widely applied in regenerative medicine. Furthermore, the regiments underlying iPSCs may substantially improve current cell-based therapies.
The overall goal of this method is to generate a large amount of HBV-specific CTLs from iPSCs (i.e., iPSC-CTLs) for ACT-based immunotherapy. The advantages over alternative techniques are that HBV-specific iPSC-CTLs have a single-type TCR and naive phenotype, which results in more memory T cell development after the ACT. It is demonstrated that the ACT of HBV-specific iPSC-CTLs increases the migration of functional CD8+ T cells in the liver and reduces HBV replication in both the livers and blood of administered mice. This method reveals a potential use of viral Ag-specific iPSC-CTLs for HBV immunotherapy and may be adapted to generate other viral Ag-specific iPSC-T cells for viral immunotherapy.
All animal experiments are approved by The Texas A&M University Animal Care Committee (IACUC; #2018-0006) and are conducted in compliance with the guidelines of the Association for the Assessment and Accreditation of Laboratory Animal Care. Mice are used during 6–9 weeks of age.
1. Generation of viral Ag-specific CD8+ T cells from iPSCs (iPSC-CD8+ T cells)
2. Induction of HBV replication through hydrodynamic delivery of HBV plasmid
NOTE: pAAV/HBV1.2 construct was generated as described previously9. The HBV 1.2 complete DNA is incorporated in the vector pAAV.
3. Reduction of HBV replication by ACT of viral Ag-specific iPSC-CD8+ T cells
As shown here, HBV viral Ag-specific iPSC-CD8+ T cells are generated by an in vitro culture system. After ACT of these viral Ag-specific iPSC-CD8+ T cells substantially suppress HBV replication in a murine model (Supplemental File 1). Mouse iPSC are transduced with the MIDR retroviral construct encoding a human-mouse hybrid HBV TCR gene (HBs183-191-specific, s183), then the gene-transduced iPSCs are co-cultured with OP9-DL1/DL4 cells expressing Notch ligands (both DL1 and DL4) molecules in the presence of rFlt3L and rIL-7. On day 28 of in vitro co-culture, the iPSC-derived cells substantially express CD3 and Ag-specific TCR (T cell markers). Flow cytometric analysis of the CD3+CD8+ population shows that the HBV TCR transduction dramatically increases the generation of viral s183-specific CD8+ T cells (Figure 1).
On day 28 of in vitro co-culture, the CD4–CD8+ single-positive (SP) iPSC-CD8+ T cells are isolated and stimulated by T-depleted splenocytes pulsed with s183 peptide, and cytokine production is assessed. The iPSC-CTLs produce large amounts of IL-2 and IFN-ϒ as detected by intracellular staining or ELISA (Figure 2). HBV infection is induced in HLA-A2.1 transgenic (HHD) mice by hydrodynamic injection of 10 µg of pAAV/HBV1.2 DNA plasmid through the tail veins of mice. HBV replication is detected from day 3–21 in the serum of HHD mice. The DNA replication peaks on day 6 and reduces gradually using real-time PCR analysis (Figure 3).
Two weeks following the ACT, mice are challenged with a hydrodynamic injection of pAAV/HBV1.2 DNA plasmid. The viral titer is measured by real-time PCR from serum at various timepoints after the injection. The results demonstrate that viral replication is significantly reduced at all timepoints in the mice receiving HBV viral Ag-specific T cells compared to the mice receiving control cells (Figure 4A). HBV surface protein expression is also examined in the liver in the above setting of treatment. Mice are euthanized at various days after the HBV injection and the liver samples are isolated for histologic examination. Samples are stained for HBV surface protein and examined under a fluorescence microscope. HBV surface protein is observed as substantially decreased in the mice receiving HBV viral Ag-specific pre-iPSC-CTLs, as compared with the mice receiving control cells (Figure 4B). This experiment clearly demonstrates that viral Ag-specific iPSC-CD8+ T cells have the ability to reduce HBV replication in the murine model.
Figure 1: Generation of HBV viral Ag-specific iPSC-CD8+ T cells.
Mouse iPSCs are transduced with the following retroviral constructs: HBs183-91 TCR (MiDR-s183 TCR) or OVA257–264 TCR (MiDR-OVA TCR), and the transduced iPSCs are co-cultured with OP9-DL1/DL4 stromal cells for T lineage differentiation. (A) Schematic representation of the retroviral construct MiDR-s183 TCR expressing s183-specific TCR. Ψ = packaging signal; 2A = picornavirus self-cleaving 2A sequence; LTR = long terminal repeats. (B) Morphology of T cell differentiation on days 0, 7, 14, and 22. (C) Flow cytometric analysis for the iPSC-derived cells on day 28. CD3+CD8+ cells (left) are gated as indicated and analyzed for the expression of CD8 and TCRVβ28 (right). Data shown are representative of three individual experiments. The values represent mean ± SD (**p < 0.01; paired t-tests). Please click here to view a larger version of this figure.
Figure 2: Functional analysis of the HBV viral Ag-specific iPSC-CD8+ T cells.
On day 28 of in vitro co-culture, the SP CD8+s183 TCR pentamer+ iPSC-T cells are sorted. The iPSC-T cells and CD8+ T cells transduced with MiDR-s183 TCR are stimulated by T-depleted splenocytes (APCs) from HHD mice and pulsed with s183 peptide (FLLTRILTI). (A) Intracellular staining of IFN-ϒ after 7 h (gated on CD8+ cells) (T/APCs = 1:4). (B) ELISA of IFN-γ after 40 h. Data shown are representative of three individual experiments. The values represent mean ± SD (n.s., p > 0.05; paired t-tests). Please click here to view a larger version of this figure.
Figure 3: Induction of HBV replication in HHD mice by hydrodynamic injection.
HHD mice are i.v. administrated with HBV plasmid via hydrodynamic tail vein injection. 10 μg of the plasmid is injected with 8% of total body mass PBS. On indicated time points after injection, the serum is isolated from the blood and DNA is extracted for real-time PCR. Data shown are representative of three individual experiments. The values represent mean ± SD. Data are representative of five mice per group of three independent experiments. Please click here to view a larger version of this figure.
Figure 4: Reduction of HBV replication by ACT of viral Ag-specific iPSC-CD8+ T cells.
HHD mice are i.v. adoptively transferred with viral Ag-specific iPSC-CD8+ T cell progenitors (on day 22 of the in vitro culture) and administrated with HBV plasmid at week 2 after the cell transfer. (A) Serum HBV copies. At the indicated timepoints after injection, serum is isolated from blood, and DNA is extracted for real-time PCR analysis. Data shown are representative of three individual experiments. The values represent mean ± SD. (B) Liver tissue histology. Mice are euthanized at day 8 post-HBV infection. Liver samples are isolated and stained for histologic examination. Upper panel shows the HBsAg protein expression in infected mice (IHC staining) and lower panel shows the inflammatory cell infiltration (HE-staining). Data are representative of five mice per group of three independent experiments. Please click here to view a larger version of this figure.
DNA template | 2 ml |
DNA master hybridization mixture ((Taq DNA polymerase, PCR reaction buffer, 10 mM MgCl2, and dNTP mixture) | 1 ml |
25 mM MgCl2 | 0.8 ml |
0.3 μM the probe | 3 ml |
5 μM of each primer | 3.2 ml |
Total | 10 ml |
Table 1: PCR reaction volume
Temperature | Time | |
Denaturation | 95 °C | 5 s |
Annealing | 53 °C | 10 s |
Extension | 72 °C | 20 s |
5 °C |
Table 2: PCR program
Supplemental File 1: Please click here to download this file.
This protocol presents a method to generate the viral Ag-specific iPSC-CTLs for use as ACT to suppress HBV replication in a murine model. In chronic HBV infection, the viral genome forms a stable mini chromosome, the covalently closed circular DNA (cccDNA) that can persist throughout the lifespan of the hepatocyte. Targeting the clearance of the viral mini chromosome may result in a cure of chronic HBV infection. Current antiviral therapy targets the virus reverse transcriptase but rarely establishes immunological control over HBV replication driven by cccDNA. HBV-specific CD8+ CTLs can mediate the killing of the infected hepatocytes and accelerate the clearance of cccDNA. Nevertheless, the HBV-specific CTLs are deleted, dysfunctional, or succumb to exhaustion in patients with chronic HBV infection. ACT with the HBV-specific CTLs is a favorable treatment for chronic HBV infection28,29. Naive or central memory T cell-derived T lymphocytes (i.e., highly reactive immune cells) are ideal effectors for ACT-based therapies owing to their great proliferation, lower tendency for death compared to terminally differentiated cells, and excellent ability to respond to homeostatic cytokines. However, such ACT has been often not feasible due to difficulties in obtaining sufficient numbers of CTLs from patients. It has been previously showed that reprogramming of Ag-specific CTLs or Tregs from iPSCs can be used for cell-based therapies20,23,27,30. This report demonstrates a method to generate viral Ag-specific iPSC-CTLs and use these cells for ACT-based immunotherapy in a murine model of HBV replication.
Although there are transgenic mouse models of HBV replication, these models are challenging because the central tolerance induced by the transgenic gene products causes mice to be immune tolerant to HBV Ags. Additionally, transgenic mice are not suitable for monitoring viral clearance as the integrated HBV genome persists in each mouse cell31,32. Also, despite that successful vaccines have been developed for preventing the infection, the treatment or immunotherapy after HBV infection has not been developed. Furthermore, the experimental approaches to HBV pathogenesis have been hampered because the host range of HBV infection is limited to men and chimpanzees, and in vitro culture system for the propagation of HBV is not sufficient. CD8+ T cells are promising effector cells against various types of viral infection; however, T cell response against HBV is not abundant. Specificity, functioning, and lack of sufficient numbers to mount an immune response may be the cause. This report reveals the method of hydrodynamic injection that efficiently induces HBV replication in mice. The method allows delivery of a large amount of HBV plasmid directly into the liver. The model exhibits continuous viremia for more than 8 weeks with detection of HBV mRNA, protein, and DNA at different days after injection. This method for HBV replication in mice is useful for HBV immunotherapy.
In summary, HBV replication was successfully induced in mice through hydrodynamic injection procedure, and viral Ag-specific iPSC-CTLs were used as immunotherapy for HBV replication. However, there are two limitations of the method: (1) more than three weeks of in vitro T cell differentiation may reduce the translational applications of the generated T cells for ACT; and (2) HBV hydrodynamic injection can efficiently induce HBV replication in the liver; however, it does not form the cccDNA, which is the main reason for the persistent HBV infection. Nevertheless, the method provides an alternative approach for HBV replication and treatment. A combination regimen using anti-HBV drugs and the ACT of viral Ag-specific iPSC-CTLs is likely to reduce HIV reservoirs, thereby resulting in a therapy for chronic HIV infection.
The authors have nothing to disclose.
The authors thank Dr. Adam J Gehring from Toronto General Hospital Research Institute for providing cDNA for HBs183-91 (s183) (FLLTRILTI)- specific A2-restricted human-murine hybrid TCR genes, and Dr. Pei-Jer Chen from National Taiwan University for providing pAAV/HBV 1.2 construct. This work is supported by the National Institute of Health Grant R01AI121180, R01CA221867 and R21AI109239 to J. S.
HHD mice | Institut Pasteur, Paris, France | H-2 class I knockout, HLA-A2.1-transgenic (HHD) mice | |
iPS-MEF-Ng-20D-17 | RIKEN Cell Bank | APS0001 | |
SNL76/7 | ATCC | SCRC-1049 | |
OP9 | ATCC | CRL-2749 | |
pAAV/HBV1.2 plasmid | Dr. Dr. Pei-Jer Chen (National Taiwan University Hospital, Taiwan) | HBV DNA construct | |
HBs183-91(s183) (FLLTRILTI)-specific TCR genes | Dr. Adam J Gehring (Toronto General Hospital Research Institute, Toronto, Canada) | FLLTRILTI-specific A2-restricted human-murine hybrid TCR genes (Vα34 and Vβ28) | |
OVA257–264-specific TCR genes | Dr. Dario A. Vignali (University of Pittsburgh, PA) | SIINFEKL-specific H-2Kb-restricted TCR genes | |
Anti-CD3 (17A2) antibody | Biolegend | 100236 | |
Anti-CD44 (IM7) antibody | BD Pharmingen | 103012 | |
Anti-CD4 (GK1.5) antibody | Biolegend | 100408 | |
Anti-CD8 (53-6.7) antibody | Biolegend | 100732 | |
Anti-IFN-γ (XMG1.2) antibody | Biolegend | 505810 | |
Anti-TNF-a (MP6-XT22) antibody | Biolegend | 506306 | |
α-MEM | Invitrogen | A10490-01 | |
Anti-HBs antibody | Thermo Fisher | MA5-13059 | |
ACK Lysis buffer | Lonza | 10-548E | |
Brefeldin A | Sigma | B7651 | |
DMEM | Invitrogen | ABCD1234 | |
FBS | Hyclone | SH3007.01 | |
FACSAria Fusion cell sorter | BD | 656700 | |
Gelatin | MilliporeSigma | G9391 | |
GeneJammer | Agilent | 204130 | |
HLA-A201-HBs183-91-PE pentamer | Proimmune | F027-4A – 27 | |
HRP Anti-Mouse Secondary Antibody | Invitrogen | A27025 | |
mFlt-3L | Peprotech | 250-31L | |
mIL-7 | Peprotech | 217-17 | |
Nuclease S7 | Roche | 10107921001 | |
Paraformaldehyde | MilliporeSigma | P6148-500G | Caution: Allergenic, Carcenogenic, Toxic |
Permeabilization buffer | Biolegend | 421002 | |
Polybrene | MilliporeSigma | 107689 | |
ProLong™ Gold Antifade Mountant with DAPI | Invitrogen | P36931 | |
QIAamp MinElute Virus Spin Kit | Qiagen | 57704 |