This study details the process of gavaging precise amounts of probiotics to neonatal mice. The experimental set-up was optimized to include but is not limited to probiotic dosing, methods of administration, and quantification of bacteria in the intestines.
Adult mouse models have been widely used to understand the mechanism behind disease progression in humans. The applicability of studies done in adult mouse models to neonatal diseases is limited. To better understand disease progression, host responses and long-term impact of interventions in neonates, a neonatal mouse model likely is a better fit. The sparse use of neonatal mouse models can in part be attributed to the technical difficulties of working with these small animals. A neonatal mouse model was developed to determine the effects of probiotic administration in early life and to specifically assess the ability to establish colonization in the newborn mouse intestinal tract. Specifically, to assess probiotic colonization in the neonatal mouse, Lactobacillus plantarum (LP) was delivered directly into the neonatal mouse gastrointestinal tract. To this end, LP was administered to mice by feeding through intra-esophageal (IE) gavage. A highly reproducible method was developed to standardize the process of IE gavage that allows an accurate administration of probiotic dosages while minimizing trauma, an aspect particularly important given the fragility of newborn mice. Limitations of this process include possibilities of esophageal irritation or damage and aspiration if gavaged incorrectly. This approach represents an improvement on current practices because IE gavage into the distal esophagus reduces the chances of aspiration. Following gavage, the colonization profile of the probiotic was traced using quantitative polymerase chain reaction (qPCR) of the extracted intestinal DNA with LP specific primers. Different litter settings and cage management techniques were used to assess the potential for colonization-spread. The protocol details the intricacies of IE neonatal mouse gavage and subsequent colonization quantification with LP.
In infants, early probiotic exposure has been associated with immunomodulatory effects leading to reduced incidence of diseases like necrotizing enterocolitis, atopic dermatitis and sepsis1,2,3,4,5. However, the mechanism behind this immunomodulatory response is challenging to explore given the limitation to sampling in newborn human trials (i.e., sequential blood draws and biopsies). Neonatal mouse models can help study the mechanism of action involved in neonatal immune regulation associated with probiotic use and changes in the intestinal microbiota. Unfortunately, most mouse models for probiotics have largely focused on adult mice; however, the impact of probiotics is likely to be highest early in life, suggesting models specific for this age group will be useful3,6. In addition, neonatal mouse models are better suited to study diseases and interventions intended for application in early life of human infants as they are expected to more closely mimic a developing immune and microbial system7,8,9,10. The aim was to study the extent and patterns of probiotic colonization of neonatal mice with a focus on the mechanistic interaction between the host and its microbiome. Suitable descriptions of newborn models were not found in the literature, and thus a need for the development of robust and standardized method was addressed.
Established methods of oral administration of various compounds to newborn mice include maternal transfer of desired compounds through milk by treating the water source for pregnant dams11 or using feeding needles to facilitate administration of desired compounds into the oropharynx12. These methods are useful for experiments that do not have precise dosage requirements and where the treatment is readily ingested by the recipient mouse. Probiotics are often administered in conjunction with a prebiotic such as galactooligosaccharide and fructooligosaccharide (FOS) that serve as a source of nutrition for probiotic bacteria; these additive compounds make the solution viscous and challenging to administer via the above-mentioned methodologies. Devising a method to administer precise amounts of probiotics and prebiotics to newborn mice starting as early as the first day of life (DOL) was necessary. In the process of developing the gavage technique, the possibility of colonization-spread (as observed in other probiotic studies between the treatment and the control arms13,14,15,16) was tested and the relative abundance of colonized Lactobacillus plantarum (LP) in the intestines of pups with different gavage schedules was assessed. The probiotic preparation used in the experiments consisted of 109 colony-forming units (CFU) per gavage of LP (ATCC-202195 strain), mixed with FOS (prebiotic) and maltodextrin (excipient) as described in the recent human trial3. The probiotic delivery was accomplished using IE gavage and the process is detailed in the protocol below. The colonization profile of the probiotic was evaluated using real time amplification of DNA extracted from whole intestines using LP specific primers.
All procedures were carried out pertaining to the guidelines established by the support staff at the Animal Care Facility at the University of British Columbia and all procedures were approved by the UBC Animal Care Committee.
1.Quantification of probiotics administered
NOTE: This step is recommended to determine the exact amount of probiotic CFU that can be administered in a single dose. The quantity of probiotics and vehicle (FOS and maltodextrin) determine the saturation conditions of the solution. From experience, no more than 30 µL (~20 mL per kg) of fluid can be administered to mice on DOL 2 as any greater volume increases risk of aspiration.
2. Preparation of probiotics and prebiotics for gavage
NOTE: The proper dissolution of probiotic and prebiotic is necessary to ensure the smooth injection of liquid through the feeding needle during gavage.
3. Preparation of the biosafety cabinet
4. Intra-esophageal gavage of neonatal mouse
5. Collection of intestional samples for colonization analysis
6. DNA extraction from intestines for colonization analysis
NOTE: The DNA extraction is done using a commercial kit with optimizing modifications made to the protocol for the intestine DNA extraction. Ensure the heating apparatus is set to the desired temperature and the solutions that need alterations or pre-warming are prepared appropriately.
7. qPCR setup
8. Quantification of LP colonization
The uniqueness of this method rests in its adaptation of the gavaging technique to the size and frailty of a neonatal mouse. The previous section described the important steps in carrying out a successful gavage procedure on a DOL 2 mouse. To establish a good quantification scale, a standard curve was generated using pure LP DNA with three technical replicates (Figure 2). The standard curve provided a dynamic range of detection of the LP DNA using the primers. The dynamic range was between 7 and 28 cycles where a range of 101 to 107 copies of LP DNA was detected. The steady slope of the standard curve represented the efficiency and scalability of the reaction.
The procedure of IE gavage has been used in adult mice with relative ease. However, the upper gastrointestinal tract of a neonatal mouse is fragile and required calibrated movements of the gavage needle during the procedure. Repeated gavages could increase the chances of intra-esophageal irritation, injury and failure or rejection by the dam due to the handling. Thus, two different gavaging schedules were tested and the intestinal colonization was quantified using DNA from whole intestine homogenates. Mice were gavaged from DOL 2 through DOL 8 with probiotic administered every day or every two days (Figure 3). Each sample contained one technical replicate and every condition had at least two biological replicates. The pups gavaged every day with 7 doses had around 103 copies of LP whereas the pups gavaged every two days with 4 doses had around 105 copies. The consistency of results between the replicates add credit to the precision of technique. There was more LP detected in intestines of pups gavaged every two days in comparison with pups that were gavaged every day. Given this, subsequent experiments were set up with a gavage schedule of every other day as it also reduces the stress for the pups.
It is important to avoid intra-litter probiotic cross contamination when working with probiotics. The microbiome of littermates was expected to be similar as they share the same mother and nesting environment. This proves a problem for probiotic studies if the treatment and control conditions were present within the same litter as the probiotic organism has the potential to become a part of the microbiota ("colonization spread'). To determine if a probiotic will contaminate and colonize untreated littermates, half of a litter was gavaged as above and the intestines were collected for qPCR. Intestinal qPCR analysis of DOL 10 mice showed expected amplification of LP DNA in the gavaged mice but also, to a lesser degree in the non-gavaged littermates (Figure 4). The intestines of the same DOL mice from an untreated cage showed no amplification or minimal amplification at cycles greater than 32. This provided evidence for the communal sharing of the microbiome within a litter in a cage. Thus, for experiments with probiotics the treatment groups should be separated by cages to control for variability through cross contamination. The use of foster dams can be considered if an experiment is to be set up within a litter setting, but confounding effects like diminished care from the foster dam and rejection should be evaluated and optimized for. When mice gavaged until DOL 8 were left untreated for six days and the intestinal DNA was analysed at DOL 14, approximately 10 copies of LP were found (Figure 5). Thus, the colonization of LP was found to be transient and the detectable population diminished over time.
Figure 1. Measuring the length between the xiphoid process (lower end of the sternum) and the snout to make maximum insertion marking for the needle. Please click here to view a larger version of this figure.
Figure 2. Standard curve established using LP primers and ATCC LP DNA. A serial dilution of the ATCC LP DNA was made to establish the dynamic detectable range for the primers used in the study. Please click here to view a larger version of this figure.
Figure 3. LP amplification of intestinal DNA from DOL 10 pups treated between DOL 2 and DOL 8 in scheduled gavages every day (7 doses) and every other day (4 doses). Gavaging every other day showed higher intestinal LP in comparison with gavaging every day. Please click here to view a larger version of this figure.
Figure 4. LP amplification of intestinal DNA from DOL 10 pups with 2 treated and 2 untreated in a litter of 4 pups. The gavage was between DOL 2 and DOL 8 in scheduled gavages every day (7 doses). The two probiotic treated pups show the expected amplification profile. The untreated pups show variable amplification of LP indicating communal sharing of the probiotic organism within a litter. Please click here to view a larger version of this figure.
Figure 5. LP amplification of intestinal DNA from DOL 14 pups treated between DOL 2 and DOL 8 in scheduled gavages every day (7 doses) and every other day (4 doses). The LP load drops below cycle 28 indicating clearance of LP over the course of 6 days post last probiotic gavage. Please click here to view a larger version of this figure.
Step | Temperature | Time |
1 | 50 °C | 2 minutes |
2 | 95 °C | 3 minutes |
3 | 95 °C | 30 seconds |
4 | 58 °C | 30 seconds |
5 | 72 °C | 30 seconds |
Table 1. qPCR amplification conditions. The temperature and number of cycle conditions for the PCR reaction.
Target | 16S-23S intergenic spacer region |
Expected fragment size | 144 bp |
Primer Tm | 58˚C |
Forward primer (FP) | Lpn-1: TGG ATC ACC TCC TTT CTA AGG AAT |
Reverse primer (RP) | Lpn-2: TGT TCT CGG TTT CAT TAT GAA AAA ATA |
Table 2. Details of components of the qPCR reaction. The details on the primers, their annealing temperature and expected fragment size in the PCR reaction.
Concentration | 10 µL reaction | 20 µL reaction | |
Template DNA | 200 pg/µL | 1 µL | 1 µL |
SYBR Master Mix | – | 5 µL | 10 µL |
FP | 10 µM | 0.3 µL | 0.6 µL |
RP | 10 µM | 0.3 µL | 0.6 µL |
dH2O | – | 3.4 µL | 8.8 µL |
Table 3. Per reaction volumes and concentrations. The concentration of reagents and volumes for reactions.
The procedure of IE gavage was developed to safely administer a specific dose of a probiotic to neonatal mice. Small amounts of liquid are delivered to the upper gastrointestinal tract using a feeding needle to prevent aspiration while ensuring the delivery of the dosage in confidence. The intestines of the mice were collected for colonization analysis two and six days post gavage. The procedure for DNA extraction was modified to ensure high yield of the probiotic Gram-positive organism. The qPCR analysis of the DNA extracted two days post last gavage showed relatively higher colonization of LP in mice gavaged every two days in comparison to mice gavaged every day between DOL 2-8. There was also a decrease in the amount of LP over six days, showing this probiotic to be a transient organism in the intestines of the mouse. The results of these experiments establish the conditions to conduct research with high rigor in this age group.
To observe the long-term effects of probiotics in neonatal mice, it was administered to neonatal mice on DOL 2; a similar starting time point to the human trial. Oropharyngeal feeding of neonatal mice is previously described in literature and has been carried out only after DOL 5-812,17 when the risk of aspiration is lower due to a well-developed swallowing mechanics. However, oropharyngeal feeding is not well suited for DOL 2 mice as higher rates of aspiration were observed in the pilot study (data not shown). The viscous nature of the probiotic and prebiotic solution added to the risk of aspiration. Following the IE gavaging procedure minimized the risk of aspiration in DOL 2 mice while delivering the desired volume directly to the upper gastrointestinal tract. The success of the procedure was first validated using food coloring infused probiotic gavage. The food coloring acts as a marker that is visible through the skin of the pup. No negative effects were observed in mice gavaged with food coloring, and it is recommended to validate the gavaging procedure in this manner prior to commencing large-scale experiments. The rapid resolution of the gasping reflex seen post gavage can also be used as an additional indicator for a successful gavage. Once the mouse is placed on the heating blanket post-gavage, the gasping reflex will subside and an increase in the breathing frequency will be observed within 20 seconds. The continuation of the gasping reflex for longer than 30 seconds indicates a failed gavage. Successful gavage also depends on appropriate insertion of the feeding needle with the bulb sitting right above the opening of the cardiac sphincter of the stomach. This can be facilitated by ensuring that the marking on the needle measuring the length between the xiphoid process and the tip of the snout, does not go past the snout of the mouse during gavage. This minimizes the chance of injury to the mouse. The frequency of gavage can have a significant impact on the experimental results. Frequent gavaging also can create more stress for the pups and the mother due to constant perturbation of the cage and the nest. The most optimal gavage schedule is when the gavages are the least frequent and over a shorter duration of time without losing the expected effect in the system. To ensure the safety and sterility of the procedure the gavage needle must be sterilized by washing and autoclaving in-between use. Washing rigorously on the outside using a scrub and the inside by forcing water through the needle using a syringe before autoclaving is necessary as any leftover particles can encrust on the needle during autoclaving and can interfere with the gavaging procedure.
Higher LP colonization was observed in pups that were gavaged every other day when compared to pups gavaged every day. This can be due to the reduced stress on pups gavaged every other day and potentially the probiotic getting more nutrients through the relatively more milk ingested by these pups. The dose dependency of probiotic treatment has been previously studied in mouse models18,19 and thus the administration of correct dosage is important. The probiotic solution prepared is plated before every gavage to get an accurate count of CFU administered. If the probiotic organism is anaerobic, it is important to see if there is difference in CFU when cultured aerobically or anaerobically. Since LP is a facultative anaerobe, it was cultured using both methods and no difference in CFU was observed.
The post gavage intestinal LP load analysis was done using qPCR and high-quality DNA samples. To minimize LP DNA contamination between the treatment and the control groups, different feeding needles, biosafety cabinets and surgical equipment were used to ensure highest quality samples. The accurate measurement of the probiotic in the intestine required an optimized DNA extraction method. Most efficient methods for the extraction of DNA from stool involves multiple bead beating steps20,21,22. This method was adopted for the extraction of intestinal bacteria using bead beating and observed diminished representation (<102 copies recovered) of LP in the whole intestine DNA extraction. As LP is a Gram positive organism with a substantial amount of peptidoglycan in the cell wall, the protocol was optimized with a peptidoglycan dissolution step using lysozyme23,24 added to the enzymatic lysis buffer. This increased the representation of LP in the same intestinal sample by greater than two-fold. The lysozyme treatment ensures the dissolution of the outer layer while the bead beating step facilitates the lysis of the organism. Optimization of amount of tissue, the type of garnet bead and the duration of disruption using the beads is necessary for obtaining optimal DNA products to conduct the PCR analysis.
The positive impact of probiotics administered as prophylaxis or treatment in the pre-term and term neonates is evidenced in recent studies25,26,27,28. The establishment of a proper neonatal mouse model for probiotics is warranted to unpack the protective effect of probiotics. This protocol outlined here represents a guide for researchers unfamiliar with neonatal mouse work using probiotics. Notwithstanding the issues with rodent microbiota while studying human health and disease, this method can be extended to research focused on understanding the changes of the microbiome due to probiotics. This model also provides a platform to study host-microbe interaction and immune responses over the course of different developmental stages.
The authors have nothing to disclose.
Thanks to the Animal Care Facility staff and the UBC veterinarians for training and assisting in the mouse work at BC Children's Hospital Research Institute. Thanks to the University of British Columbia and the Department of Experimental Medicine for funding the study.
1 mL tuberculin syringe with slip tip | BD | 309659 | |
1.2% Triton X-100 | Millipore-Sigma | X100-100ML | |
2 mM sodium EDTA | Thermo Fisher Scientific | 15575020 | |
20 mM Tris·Cl | Thermo Fisher Scientific | 15568025 | |
5% dextrose and 0.9% NaCl injection solution | Baxter Corp. | JB1064 | |
Alphaimager | Alpha Innotech | N/A | Gel imaging system |
Anaerobic jar | Millipore-Sigma | 28029-1EA-F | 2.5 L |
BD GasPak EZ anaerobe container system sachets | BD | 260678 | |
BD Difco Lactobacilli MRS Broth | BD | 288130 | |
Disruptor Genie | Scientific Industries Inc. | SI-D236 | |
Feeding/oral gavage needles for newborn mice and rats | Cadence Science Inc. | 01-290-1 | 24 Gauge, 1” needle length, 1.25 mm ball diameter |
Fructooligosaccharides | Millipore-Sigma | F8052 | from chicory |
Garnet bead tubes 0.70 mm | Qiagen | 13123-50 | |
iTaq Universal SYBR Green Supermix | BioRad | 172-5120 | |
Lactobacillus plantarum (Orla-Jensen) Bergey et al. | ATCC | BAA-793 | for qPCR standard curve |
Lyophilized probiotic bacteria | N/A | N/A | |
Lysozyme | Thermo Fisher Scientific | 89833 | |
Maltodextrin | Millipore-Sigma | 419672 | dextrose equivalent 4.0-7.0 |
Mini-Sub Cell GT Cell | BioRad | 1704406 | Gel chamber |
Nanodrop 1000 | Thermo Fisher Scientific | N/A | |
QIAamp Blood and Tissue kit | Qiagen | 51504 | |
StepOnePlus Real-Time PCR System | Thermo Fisher Scientific | 4376600 | |
UltraPure Agarose | Invitrogen | 16500-500 | |
Ultrapure dH2O | Invitrogen | 10977023 |