Tissue engineering of the whole pancreas is a challenge because of its exocrine and endocrine functions. We show a method for the dissection of an intact porcine pancreas and the process of successful decellularization by perfusion of detergents Triton X-100, sodium deoxycholate, and deoxyribonuclease.
Tissue engineering of the whole pancreas can improve current treatments for diabetes mellitus. The ultimate goal is to tissue engineer pancreas from an allogeneic or xenogeneic source with human cells. A demonstration of methods for the efficient dissection, decellularization, and recellularization of porcine pancreas might benefit the field. Akin to human pancreases, porcine pancreases have a special anatomical arrangement with three lobes (splenic, duodenal, and connection) rounded by the duodenum and small intestine. The duodenal lobe of the pancreas connects to the duodenum by several small blood vessels. Tissue engineering of the pancreas is complicated because of its exocrine and endocrine nature. In this paper, we show a detailed protocol to dissect the whole porcine pancreas and decellularize it with detergents while saving its structure and some extracellular matrix components. To achieve complete perfusion, the aorta is chosen as inlet and the portal vein as outlet. The other blood vessels (hepatic artery, splenic vein, splenic artery, mesenteric artery and vein tree) and bile duct are ligated. To prevent the formation of thrombus, the pig is heparinized and, immediately after dissection, the organ is flushed with cold heparin. To inhibit the action of exocrine enzymes, the pancreas decellularization is set at 4 °C. The decellularization is performed by perfusion of Triton X-100, sodium deoxycholate, and deoxyribonuclease, with an intermittent and final extensive washing. With a successful decellularization, the pancreas appears white, and a histological evaluation with hematoxylin and eosin shows an absence of nuclei with a preserved extracellular matrix structure. Thus, the proposed method can be used to successfully dissect and decellularize whole porcine pancreas.
Diabetes mellitus is characterized by the presence of increased levels of glucose in blood. It is recognized as a major public health challenge in most countries1. High levels of blood glucose affect the blood vessels and nervous system, causing damage to the eyes, the heart, and the kidneys, and extremity ischemia. Traditional methods of treatment include injections of exogenous insulin, drugs, and lifestyle changes. Putting aside a cure for the disease, in some cases, available treatments fail to maintain the insulin at therapeutic levels, resulting in hyperglycemia. Although the transplantation of islets or whole pancreas eliminates the disease, it is not commonly done because of a shortage of suitable donor organs and because of the risks and difficulties involved from immunosuppression and encapsulation2.
Current improvements in the field of tissue engineering and regenerative medicine possess the capacity for providing a solution for these issues. With the technique of decellularization, the cellular material from a human or animal donor can be removed while the important extracellular matrix (ECM) proteins, growth factors, and signaling molecules are preserved in the scaffold. Such scaffolds can potentially be transplanted without the need for immunosuppression, to restore the organ function after recellularization with the recipient's own non-immunogenic stem cells3,4. The tissue-engineered organs from allogeneic or xenogeneic sources can be used in clinical transplantation, as the major extracellular matrix proteins are conserved among species and might not be rejected after transplantation5.
Decellularization is a well-explored method involving the optimal use of physical forces, chemical detergents, and enzymes in a physiological setting to remove cells and nuclear material from a tissue or organ. Recellularization is a procedure of seeding cells back into the acellular organ. It is an intellectually tough procedure, requiring a large number of cells, an optimum cell-seeding strategy, and a bioreactor system for the culture of the organ at physiologically acceptable conditions like temperature, pressure, and gases6.
The pancreas can be considered a challenging tissue for tissue engineering because of its exocrine and endocrine capacities. The exocrine tissue secretes several digestive enzymes, while the endocrine part secretes hormones, including insulin. The decellularization of intact pancreases from mouse7,8, human9, and pig10 has already been reported using enzymes (trypsin, deoxyribonuclease [DNase]) and non-ionic (Triton X-100) and ionic detergents (sodium deoxycholate [SDC] and sodium dodecyl sulfate [SDS]). However, following the published protocols, we struggled with a successful dissection and complete perfusion and decellularization while maintaining an ECM structure. We speculated that the applied detergents during the decellularization cause lysis of the cells, thereby releasing digestive enzymes into the organ. The released enzymes will cause an irreversible damage to the ECM scaffold and make it inefficient for decellularization and recellularization. A design of the method that effectively decellularizes pancreas while inhibiting the action of digestive enzymes may solve the problem. We chose the strategy of Peloso et al., of decellularization of the pancreas at a cold temperature, although they did not report on why cold temperature is used9. At the same time, we designed a dissection strategy with modifications from Taylor et al. by choosing the aorta as a perfusion inlet over the coeliac trunk (CT) and the superior mesenteric artery (SMA)11.
In a recently published article12, we demonstrate a method for the effective isolation and decellularization of porcine pancreas while preserving some ECM components. In this paper, we show a detailed description of how to dissect a whole porcine pancreas containing splenic, duodenal, and connection lobes, and present a stepwise protocol for successful decellularization.
The dissection of a porcine pancreas and the decellularization procedure presented here follow the ethical guidelines of the University of Gothenburg.
1. Preparation of the Decellularization Set-up
Figure 1: Preparation of the perfusion set-up. Using a 3 x 5 mm silicone tube, as shown in the set-up, connect in series the detergent inlet container to the peristaltic pump, the degasser and the organ chamber. The black arrows show the flow direction from detergent inlet container to organ chamber. For the detergent outlet, use another 3 x 5 mm silicone tube and connect the organ chamber via the peristaltic pump to the detergent outlet container. The red arrows show the flow direction from organ chamber to detergent outlet container. Please click here to view a larger version of this figure.
2. Preparation of Decellularization Solutions
3. Dissection of the Porcine Pancreas
NOTE: In this study, porcine pancreases were dissected from euthanized, heparinized (400 IU/kg) female pigs weighing 45 kg from a farm.
4. Preparation of the Porcine Pancreas for Decellularization
5. Decellularization of the Porcine Pancreas
6. Verification of Decellularization
Representative porcine pancreas dissection pictures, which can help in locating and dissecting the inferior mesenteric artery and vein tree, the portal vein, the hepatic artery, the bile duct, and the aorta branching to CT and SMA, are shown in Figure 2A, 2B, and 2C (yellow arrows), respectively. Figure 3A shows the gross morphology of a normal pancreas, which appears light pink and contains splenic, connection, and duodenal lobes. After decellularization, the pink color is lost and the decellularized pancreas looks pale white in color. The gross morphology picture showing splenic, connection, and duodenal lobes of a decellularized pancreas is shown in Figure 3B. Figure 3C shows the presence of many blue nuclei in a normal pancreas by staining with HE. In a decellularized pancreas, the HE staining showed a loss of nuclei, as no blue nuclei are seen (Figure 3D).
Figure 2: Pictures of a porcine pancreas dissection. (A) Location of the inferior mesenteric artery and vein tree (yellow arrow). (B) Ligation of the portal vein, the hepatic artery and the bile duct (yellow arrow). (C) Aorta branching to the coeliac trunk and the superior mesenteric artery (yellow arrow). Please click here to view a larger version of this figure.
Figure 3: Gross morphology and HE staining of normal and decellularized pancreases. (A) Gross morphology of a normal pancreas. (B) Gross morphology of a decellularized pancreas. (C) HE staining shows the presence of blue nuclei in a normal pancreas. (D) HE staining shows the absence of blue nuclei in a decellularized pancreas. Please click here to view a larger version of this figure.
The proposed protocol, using perfusion of SDC and Triton X-100 at 4 °C, will decellularize whole porcine pancreas successfully. The challenge in this technique is the dissection of the intact pancreas containing all the three lobes without damaging the parenchyma and its supplying vessels, as well as the ligation of the other vascular branches of the specimen in order to perfuse the organ without leakage. The porcine pancreas has a different anatomy compared to the human pancreas. It consists of three lobes and stays in close contact with the small intestine by partly surrounding it. We dissected the duodenum together with the pancreas, as several small blood vessels from pancreas connect the intestine. During the optimization studies, blunt cutting of these blood vessels has shown leakage and an incomplete perfusion of solutions.
Since the aorta connects to the pancreas through the coeliac and superior mesenteric arteries, we chose the aorta as an inlet to keep the perfusion simple by only using one cannula and, therefore, one inlet. In our experience, ligation of the aorta above the CT and below the SMA will decrease the time of dissection and reduces the risk of damaging any of the two vessels. In addition to a heparinized pig, we also noticed that a perfusion of cold heparin via the aorta immediately after the dissection helps in achieving perfusion of solutions throughout the organ. We speculate if this occurs by preventing the formation of blood clots in the blood vessels. The initial perfusion of a pancreas with ultrapure water after dissection will lyse red blood cells and remove the blood remnants in the organ, thereby preventing the formation of blood clots. This period can also be used to find any unligated small branches of veins and arteries, as blood flow can be easily noticed above the background.
We chose to keep the whole decellularization procedure at cold temperatures (4 °C), as this will hinder the action of exocrine enzymes that release from exocrine cells of the pancreas. The exocrine enzymes, when not inhibited, can cause a deleterious effect on cells and the ECM, as they can digest cell membranes and proteins12. As freezing and thawing can effectively burst the cells, we included a freeze/thaw step, initially even before the perfusion of detergents4,13. The initial wash after thawing will remove the remnants of cell bursts. The detergent treatment we used is a mix of SDC and Triton X-100 at unusually high concentrations and at a high perfusion speed. We chose this approach to achieve faster decellularization by removing the exocrine cells that damage the ECM. We speculate that a hard and fast protocol is beneficial for pancreas decellularization, as less time will be available for pancreatic enzymes to interact with the ECM, thus preserving good ECM components. To preserve the ECM components, we also added serine protease inhibitor (PMSF) to the detergent solutions, as that will inhibit the activation of enzymes released from exocrine cells14. Sodium azide is added to all decellularization solutions, as it acts as a bacteriostatic agent, thereby inhibiting the chance of bacterial contamination15.
The pancreas decellularized following this protocol showed a preservation of ECM structures and the ECM proteins collagen and elastin. However, a significant loss of glycosaminoglycans was noticed in the decellularized pancreas. The pancreas decellularized in this fashion also showed promise for the attachment of human fetal pancreatic stem cells and the expression of exocrine and endocrine markers in pieces recellularized for 14 days12. However, to generate an intact and functional pancreas, further research is required in evaluating correct cell sources, cell types, cell seeding strategies, and bioreactor culture.
The authors have nothing to disclose.
This study was financed by a grant from the Swedish Government LUA ALF to S.S.H.
4mm DLP arteriotomy cannula | Medtronic | 31104 | |
2ml Unlabelled pipette | vWR | 612-3720 | |
Degasser | Biotech AB | 0001-6484 | |
DNase-I | Worthington | LS0020007 | |
Dulbecco's PBS with CaCl2 and MgCl2 | Sigma Aldrich | D8662 | |
EDTA disodium salt dihydrate | AlfaAesar | A15161.OB | |
Heparin | Leo | 387107 | |
Luer Male with 1/8" ID Barb | Oina | LM-2PP-QC | For 3X5mm silicon tube |
Peristaltic pump | Oina | SP-1X4 | |
PMSF | Roche | 10837091001 | Unstable in aqueous solution. Should be added fresh before perfusion. |
Potassium chloride | Sigma Aldrich | P5405 | |
Potassium hydrogen phosphate | Sigma Aldrich | P9791 | |
SDC | Sigma Aldrich | 30970 | |
Silicon tube 3X5mm | VWR | 2280706 | |
Sodium Azide | Sigma Aldrich | 71290 | |
Sodium chloride | Sigma Aldrich | 13423 | |
Sodium hydrogen phosphate | Merck | 71640-M | |
Suture | Vömel | 14817 | |
Syrringe 50mL | Becton Dickinson | 300137 | |
Triton-X-100 | AlfaAesar | A16046.OF |