The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system provides a promising tool for genetic engineering, and opens up the possibility of targeted integration of transgenes. We describe a homology-mediated end joining (HMEJ)-based strategy for efficient DNA targeted integration in vivo and targeted gene therapies using CRISPR/Cas9.
As a promising genome editing platform, the CRISPR/Cas9 system has great potential for efficient genetic manipulation, especially for targeted integration of transgenes. However, due to the low efficiency of homologous recombination (HR) and various indel mutations of non-homologous end joining (NHEJ)-based strategies in non-dividing cells, in vivo genome editing remains a great challenge. Here, we describe a homology-mediated end joining (HMEJ)-based CRISPR/Cas9 system for efficient in vivo precise targeted integration. In this system, the targeted genome and the donor vector containing homology arms (~800 bp) flanked by single guide RNA (sgRNA) target sequences are cleaved by CRISPR/Cas9. This HMEJ-based strategy achieves efficient transgene integration in mouse zygotes, as well as in hepatocytes in vivo. Moreover, a HMEJ-based strategy offers an efficient approach for correction of fumarylacetoacetate hydrolase (Fah) mutation in the hepatocytes and rescues Fah-deficiency induced liver failure mice. Taken together, focusing on targeted integration, this HMEJ-based strategy provides a promising tool for a variety of applications, including generation of genetically modified animal models and targeted gene therapies.
Precise, targeted genome editing is often required for producing genetically modified animal models and clinical therapies. Much effort has been made to develop various strategies for efficient targeted genome editing, such as zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 systems. These strategies create targeted DNA double-strand breaks (DSB) in the genome, and take advantage of intrinsic DNA repair systems, such as homologous recombination (HR)1,2, microhomology-mediated end joining (MMEJ)3,4,5, and non-homologous end joining (NHEJ)6,7,8 to induce targeted integration of transgenes1,9. The HR-based strategy is currently the most commonly used genome editing approach, which is very efficient in cell lines, but not readily accessible to non-dividing cells due to its restricted occurrence in the late S/G2 phase. Thus, the HR-based strategy is not applicable for in vivo genome editing. Recently, the NHEJ-based strategy was developed for efficient gene knock-in in mouse tissues8. Nevertheless, the NHEJ-based method usually introduces indels at the junctions, making it difficult to generate precise genome editing, especially when trying to construct in-frame fusion genes8. MMEJ-based targeted integration is capable of precise genome editing. However, it only modestly increases the targeted integration efficiency in previous reports5. Therefore, improving the efficiency of precise targeted integration in vivo is urgently needed for broad therapeutic applications3.
In a recently published work, we demonstrated a homology-mediated end joining (HMEJ)-based strategy, which showed the highest targeted integration efficiency in all reported strategies both in vitro and in vivo10. Here, we describe a protocol for the establishment of the HMEJ system, and also the construction of the single-guide RNA (sgRNA) vectors targeting the gene of interest and the donor vectors harboring sgRNA target sites and ~800 bp of homology arms (Figure 1). In this protocol, we also describe the detailed steps for generation of DNA knock-in mice and brief steps for targeted integration in tissues in vivo. Moreover, a proof-of-concept study of the HMEJ-based strategy demonstrated its ability to correct Fah mutation and rescue Fah-/- liver failure mice, which further revealed its therapeutic potential.
All procedures including animal subjects have been approved by the Biomedical Research Ethics Committee at the Shanghai Institutes for Biological Science (CAS).
1. Design of Donor Plasmids
2. Genome Editing in Mouse Embryos Using the HMEJ-Based Method
3. HMEJ-Based In Vivo Genome Editing in Hepatocytes
HMEJ-based genome editing in mouse embryos: To define the knock-in efficiency of the HMEJ-based method in mouse zygotes, we delivered Cas9 mRNA, sgRNA targeting the Cdx2 gene and the HMEJ donor into mouse zygotes, which was designed to fuse a p2A-mCherry reporter gene to the last codon of the Cdx2 gene (Figure 2A). The injected zygotes developed into blastocysts in the culture. To evaluate the knock-in efficiency, we analyzed the mCherry fluorescence with a fluorescent microscope, and we found that 12.9% of the blastocysts receiving HMEJ donors were positive for mCherry, which was strictly expressed in the trophectoderm (Figures 2B,2C). By sequencing the PCR positive mice, we also found that all examined integration events were precise in-frame integrations at both 5' and 3' junctions (Figure 2D).
HMEJ-based genome editing in adult tissues and HMEJ-mediated gene therapy: To investigate whether HMEJ-based genome editing could be applied in adult tissues, we inserted the mCherry cassette right before the stop codon of Actb gene by transducing Actb-HMEJ constructs to C57/B6J mouse livers by tail-vein hydrodynamic injection (Figure 3A). After 7 days of injections, we found that nearly half of the transfected hepatocytes expressed mCherry as stained on the liver sections (Figure 3B).
To explore the possibility of using an HMEJ-based strategy for gene therapy, we employed fumarylacetoacetate hydrolase (Fah)-deficient mice. The Fah-/- mouse is a well-established hereditary tyrosinemia type I (HTI) mouse model, which harbors an insertion fragment in exon 5 of the Fah gene, causing frameshift mutations in the following sequence23. To maintain Fah-/- mice, we treated the Fah-/- mice with an inhibitor of the upstream of tyrosine catabolic pathway, 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC)24. Here we set out to see whether MMEJ- and HMEJ-mediated gene correction could rescue Fah mutation in the Fah-/- mouse. We hydrodynamically injected Cas9 construct together with Fah-MMEJ or Fah-HMEJ constructs, designed to insert Fah cDNA of exon 5 to 14 into intron 4 of Fah gene, to Fah-/- mouse livers (Figure 3C). One week after injection, NTBC was withdrawn to induce liver damage (Figure 3C). After the withdrawal of NTBC, Fah-corrected hepatocytes of the Fah-/- mice receiving Fah-HMEJ and Cas9 constructs showed more effective proliferation than MMEJ-based method (Figure 3D).
Figure 1: HMEJ-mediated targeted integration in vitro.
(A) Experimental scheme for selection of sgRNAs: Six different sgRNAs (Cdx2-sgRNA1~Cdx2-sgRNA6) around the stop codon of the Cdx2 locus with a higher rank and off-target potential were chosen based on online CRISPR design tool. The protospacer adjacent motif (PAM) sequence is in red. (B) Experimental design: The Cas9-CMV-GFP expression plasmids expressing sgRNA, Cas9, and GFP were introduced into N2a cells. GFP+ cells were sorted at day 3 for T7EI assay. (C) T7EI assay for Cdx2 targeting: 6 different sgRNAs were designed for T7EI assay. Normal N2a cell genomic DNA serves as control. *, the sgRNA used for Cdx2-2A-mCherry knock-in experiment. (D) Schematic overview of construction of HMEJ donors using Gibson assembly. (E) Schematic overview of HMEJ-mediated gene targeting strategy at Cdx2 locus. HAL/HAR, left/right homology arm; triangles, sgRNA target sites; OF/OR, outer forward/reverse primer; IF/IR, inner forward/reverse primer. Figure modified from previous report10. Please click here to view a larger version of this figure.
Figure 2: Genome editing in mouse embryos via HMEJ-mediated targeted integration
(A) Experimental scheme of microinjection: A mixture of Cas9 mRNA (100 ng/µL), sgRNA (50 ng/µL), and donor plasmids (100 ng/µL) were injected into mouse zygotes. (B) Representative fluorescence images of mouse embryos edited by HMEJ strategy. Bar, 20 µm. (C) Knock-in efficiency indicated by percentage of mCherry+ blastocysts. Number above each bar, total blastocysts counted. (D) Sequence analysis of gene-edited mice at Cdx2 locus.PCR products amplified from 5' and 3' junction sites were sequenced. Upper, homology arm; purple, p2A; red, mCherry; HAR or HAL, right or left homologous arm. Dashed lines mark the region omitted for clarity. Figure modified from previous report10. Please click here to view a larger version of this figure.
Figure 3: HMEJ-mediated targeted integration in vivo.
(A) Schematic overview of hydrodynamic tail vein injection. A mixture of plasmids expressing donor sequence and sgRNA, and plasmids expressing spCas9 were delivered to the liver via hydrodynamic tail vein injection. (B) Representative immunofluorescence images of hepatocytes. The liver sections were collected 7 days post injection. Scale bar, 50 µm. GFP, transfected cells. (C) Plasmids of either MMEJ- or HMEJ-mediated gene replacement strategy designed to insert Fah cDNA of exon 5 to 14 into intron 4 of Fah gene were delivered into Fah-/- mouse livers by hydrodynamic injection. NTBC on: Fah-/- mice were maintained on NTBC water; NTBC off: withdrawal of NTBC water (the first day of NTBC withdrawal was defined as day 0, which is the 7th day after injection). (D) Fah immunohistochemistry staining of liver sections from Fah-/- mice injected with MMEJ or HMEJ plasmids. Scale bar, 100 µm. Figure modified from previous reports5,10. Please click here to view a larger version of this figure.
The most critical steps in the construction of HMEJ donor plasmids are: (1) selection of the sgRNA with high DNA cleavage efficiency and low distance between sgRNA cutting site and stop codon, and (2) proper construction of HMEJ donor. CRISPR/Cas9-mediated cleavage on both transgene donor vector (containing sgRNA target sites and ~800 bp homology arms) and targeted genome is necessary for efficient and precise targeted integration in vivo. The most critical steps of generation of knock-in mice using the HMEJ-based method are: (1) the preparation of high quality of Cas9 mRNA and sgRNA (No degeneration exists in Cas9 mRNA and sgRNA), and (2) the preparation of the high quality HMEJ donor plasmid. The plasmid shows no toxic effects on embryonic development.
Recently, an NHEJ-based method had also been reported for efficient in vivo genome editing8. Nevertheless, various types of indel mutations were usually induced at the junctions, as described in previous reports8, making it difficult to achieve precise integration. Here, the HMEJ-based strategy we described above showed precise targeted integration with hardly any indel mutations. Thus, an HMEJ-based strategy could be an ideal platform for replacing a mutated sequence (such as a point mutation) with the correct one, which is not applicable for NHEJ-based method.
Mosaicism is a major problem for gene editing in embryos. Injection of Cas9 protein instead of mRNA at an earlier embryonic stage may achieve transgene knock-in at one cell stage without mosaicism. For clinical applications, delivery of the CRISPR/Cas9 systems into adult tissues is still challenging.
There are many future potential uses of HMEJ-based genome editing. It can be used to generate genetically modified animal models. Considering its high knock-in efficiency in embryos, this method could significantly reduce the animal number needed for generating genetically modified animal models, and particularly opens up the possibility of generating non-human primate genetic models. HMEJ-based genome editing can lineage trace individual cell types in adult tissues, which is particularly useful for animal models, since there is a lack of available animal models, such as non-human primates. It can be used for targeted gene therapies: The most attractive application of an HMEJ-based strategy is gene therapy for clinic uses. In this study, we corrected the Fah mutation of hereditary tyrosinemia type I mice by hydrodynamic injection of the indicated vectors. However, delivery of the CRISPR/Cas9 system into adult tissues is still the major technical challenge for clinical use, as hydrodynamic injection is unlikely to be performed in patients. Currently, further improvement of the delivery strategy is urgently needed before translating this HMEJ-based method into the clinic.
The authors have nothing to disclose.
This work was supported by CAS Strategic Priority Research Program (XDB02050007, XDA01010409), the National Hightech R&D Program (863 Program; 2015AA020307), the National Natural Science Foundation of China (NSFC grants 31522037, 31500825, 31571509, 31522038), China Youth Thousand Talents Program (to HY), Break through project of Chinese Academy of Sciences, Shanghai City Committee of science and technology project (16JC1420202 to HY), the Ministry of Science and Technology of China (MOST; 2016YFA0100500).
pX330 | Addgene | 42230 | |
pAAV vector | Addgene | 37083 | |
pX260 | Addgene | 42229 | |
AAV_Efs_hSpCas9_NLS_FLAG-SV40 | Addgene | 97307 | AAV vector for encoding a human codon-optimized SpCas9 driven by EFs promoter |
AAV_Actb HMEJ donor_U6_sgRNA_EF1a_GFP_polyA | Addgene | 97308 | HMEJ donor for fusing a p2A-mCherry reporter to mouse Actb. EGFP driven by EF1a promoter and U6-driven sgRNAs targeting Actb. AAV backbone. |
AAV_Cdx2 HMEJ donor | Addgene | 97319 | HMEJ donor for fusing a p2A-mCherry reporter to mouse Cdx2. |
Lipofectamine 3000 Transfection Reagent | Life Technology | L3000015 | |
Nuclease-Free Water | Life Technologies | AM9930 | |
Bbs I | New England Biolabs | R0539S | |
NEB Buffer 2 | New England Biolabs | B7002S | |
T7 endonuclease I | New England Biolabs | M0302L | |
NEBuilder HiFi DNA Assembly Master Mix | New England Biolabs | E2621L | |
Plasmid EndoFree-Midi Kit | Qiagen | 12143 | |
MMESSAGE MMACHINE T7 ULTRA | Life Technologies | AM1345 | |
MEGACLEAR KIT 20 RXNS | Life Technologies | AM1908 | |
MEGASHORTSCRIPT T7 KIT 25 RXNS | Life Technologies | AM1354 | |
Flaming/Brown Micropipette Puller | Sutter Instrument | P-97 | Micropipette Puller (parameters: heat, 74; pull, 60; velocity, 80; time/delay, 200; pressure, 300) |
Borosilicate glass | Sutter Instrument | B100-78-10 | type of capillaries (outer diameter 1.0 mm, inner diameter 0.78 mm with filament) |
FemtoJet microinjector | Eppendorf | ||
Freezing microtome | Leica | CM1950-Cryostat | thickness of 40 μm for brain, 10 μm for liver |
Rabbit anti-mCherry | GeneTex | ||
Cy3-AffiniPure Goat Anti-Rabbit IgG | Jackson Immunoresearch | ||
DMEM | Gibco | 11965092 | |
FBS | Gibco | 10099141 | |
NEAA | Gibco | 11140050 | |
Pen,Strep,Glutamine | Gibco | 10378016 | |
Gel Extraction Kit | Omega | D2500-02 | |
FACS | BD AriaII | ||
PMSG | Ningbo Sansheng Medicine | S141004 | |
HCG | Ningbo Sansheng Medicine | B141002 | |
Cytochalasin B | Sigma | CAT#C6762 | |
KSOM+AA with D-Glucose and Phenol Red | Millipore | CAT#MR-106-D | |
M2 Medium with Phenol Red | Millipore | CAT#MR-015-D | |
Mineral oil | Sigma |