The aim of this article is to describe the methodology of exclusively endoscopic cadaveric middle ear dissection. Moreover, we aim to provide a comprehensive guide to endoscopic middle ear anatomy.
The middle ear is located in the center of the temporal bone and bears a highly complex anatomy. The recently introduced exclusively endoscopic transcanal approach to the middle ear is a minimally invasive technique sparing the bone and mucosa of the mastoid bone, since the middle ear is accessed through the external auditory canal. This emerging method has several advantages over the traditional (microscopic) approaches to the middle ear such as the panoramic wide-angle views of the anatomy, the possibility to approach and magnify tiny structures, and the possibility of looking around the corner using angled endoscopes.
The cadaveric dissection method presented here consists of an overview on the technical requirements and a precise description of a step-by-step protocol to discover the anatomy of the middle ear. Each step and anatomical structure is carefully described in order to provide a comprehensive guide to endoscopic ear anatomy. In our opinion, this is particularly important to any novice in endoscopic ear surgery as it provides thorough anatomical knowledge and may improve surgical skills.
The middle ear is located in the center of the temporal bone and bears a highly complex anatomy. The most contiguous structures are the facial nerve (FN), the cochlea (CO), the ossiculary chain (OC), the jugular vein bulb (JVB), and the internal carotid artery (ICA). The middle ear cleft is anatomically divided in five parts: the epitympanum is located superiorly, and is interconnected by the antrum to the mastoid air cell system (MACS); the retrotympanum posterior is a system of bony bridges and more or less shallow sinuses; inferiorly lies the hypotympanum; anteriorly is the protympanum with its connection to the Eustachian tube; and in the center, lies the mesotympanum1.
The physiological access through the external auditory canal (EAC) is narrow. Therefore, the standard surgical approach to the middle ear requires a retroauricular incision and the drilling of the MACS. These kinds of interventions are performed using an operating microscope. Its introduction was a milestone in otologic surgery, since it allowed the treatment of the microscopic middle ear structures. However, the microscope has a forced straight view and some areas, especially the sinus tympani, are difficult to access. This bears the risk of residual disease especially during cholesteatoma surgery2,3. Moreover, healthy tissues of the EAC, MACS, and middle ear have to be removed simply for access purposes. This not only extends the operating time, but also accounts for more surgical morbidity and a prolonged healing time4.
Recent advances led to the introduction of the endoscope as a powerful tool for ear surgery. The endoscope was first used to assist the conventionally operating surgeon to visualize the hidden areas of the middle ear. Technical and surgical refinements allowed the introduction of the endoscope as the main operating tool5. The main advantages of the endoscope are the panoramic and wide-angled views of the middle ear. For instance, the otherwise hidden retro- and hypotympanum may be accessed using an exclusive endoscopic transcanal approach without a canaloplasty6. A recent study showed superior visibility of all middle ear compartments using the endoscope when compared to the microscopic technique7. The use of angled endoscopes (30° and 45°) further improves visibility and allows dissection with a view of the most hidden areas of the middle ear.
However, endoscopic ear surgery (EES) is a one-handed surgical technique, as the second hand generally holds the endoscope. This issue and the narrow space inside the EAC require training to improve the surgeon's skills to safely apply the technique in patients. In general, the gold standard for surgical training is considered to be cadaveric dissection. In cases of unavailability of cadaveric specimens or local ethical issues, an animal model for the training of endoscopic ear surgery has recently been described8. Surgical training is considered an important factor in the education of trainees in a novel technique9.
Despite the importance of surgical training, a concise description of the important considerations on how to perform cadaveric dissection is still lacking in the literature. The aim of this article is to describe the methodology of exclusively endoscopic cadaveric middle ear dissection. Moreover, we aim to provide a comprehensive guide to endoscopic middle ear anatomy.
The present study was approved by the local institutional review board (KEK-BE 2016-00887).
1. Preparation of the Specimen
2. Getting Started
3. Elevation of the Tympano-Meatal Flap (TMF)
Note: In endoscopic ear surgery, the TMF is performed slightly smaller and in a triangular shape. The reason is the limited space inside the EAC.
4. Detachment of the TMF from the Handle of the Malleus
5. Middle Ear Exploration
NOTE: This part of the dissection aids in the recognition and rehearsal of the middle ear anatomy. Each subdivision of the TC should be explored separately using 0° and 45° endoscopes. Eventually present folds or adherences should carefully be removed.
We dissected a total of five whole head specimens and 12 temporal bone specimens (n=22 sides) using the described instructions. The different regions of the TC were documented photographically and further analyzed. All regions were explored using 0° and 45° endoscopes. We conducted a complete exploration of all anatomical regions and identified all mentioned anatomical landmarks.
The anatomical structures are illustrated according to the progress of the dissection. Figure 1 illustrates the Prussak space and the malleolar ligaments, whereas Figure 2 demonstrates the anatomy after complete TMF elevation. The wide-angle view allows the visualization of the meso- and hypotympanum as well as parts of the epi-, retro-, and protympanum. In Figure 3, the superior retrotympanum is shown as it appears in a 45° endoscope, while the surgeon is standing on the opposite side of the table. Figure 4 illustrates in detail the protympanum with a dehiscent ICA. After removal of the OC and transcanal atticotomy the epitympanum is inspected until the lateral semicircular canal and the antrum as shown in Figure 5.
No specimen required canaloplasty to perform complete exploration of the tympanic cavity. The identification of the anatomical structures was possible in all specimens using the 0° and 45° scope. However, the complete exploration of the retrotympanum, especially the facial recess and the sinus tympani, was not possible in 27% of the cases (n=6), since these bony bays were too deep to be completely explored.
Figure 1. Left ear, 0° endoscope: View of the Prussak space and the surrounding ligamental folds of the malleus. tm: tympanic membrane, an: annulus, u: umbo, sp: short process of malleus, amf: anterior malleolar fold, lmf: lateral malleolar fold, plm: posterior ligament of malleus, ct: chorda tympani, *: Prussak space Please click here to view a larger version of this figure.
Figure 2. Left ear, 0° endoscope: View of the tympanic cavity after elevation of the tympano-meatal flap. The meso- and hypotympanum as well as parts of the epi-, retro- and protympanum are visualized. pr: promontory, jn: Jacobson nerve, hy: hypotympanum, fi: finiculus, sst: sinus subtympanicus, se: styloid eminence, pe: pyramidal eminence, st: stapedial tendon, isj: incudostapedial joint, fn: facial nerve, u: umbo, m: manubrium, sp: short process, n: neck of the malleus, ttm: tensor tympani muscle, ttf: tensor tympani fold, ica. Internal carotid artery Please click here to view a larger version of this figure.
Figure 3. Right ear, 45° endoscope, contralateral position of the surgeon: The superior retrotympanum is illustrated using an angled endoscope. fn: facial nerve, s: stapes, st: stapedial tendon, ps: posterior sinus, fp: footplate, po: ponticulus, pe: pyramidal eminence, sit: sinus tympani, sub, subiculum, se: styloid eminence, sst: sinus subtympanicus, ap: anterior pillar, teg: tegmen, pp: posterior pillar, rw: round window, fu: fustis, tu: subcochlear tunnel Please click here to view a larger version of this figure.
Figure 4. Left ear, 45° endoscope: Detailed view of the protympanum. Note the dehiscent carotid artery. et: Eustachian tube, ica: internal carotid artery, pro: protiniculus, co: cochlea, ttm: tensor tympani muscle Please click here to view a larger version of this figure.
Figure 5. Left ear, 0° endoscope: After removal of the incus and malleolus and curettage of the scutum, a wide overview of the tegmen tympani and the antrum is illustrated here. Note the lateral semicircular canal and the tensor tympani muscle being in one line with the facial nerve crossing. teg: tegmen, cog: COG or transverse crest, gg: geniculate ganglion, cp: cochleariform process, ttm: tensor tympani muscle, lsc: lateral semicircular canal, fn: tympanic segment of facial nerve, s: stapes, co: cochlea, ica: internal carotid artery Please click here to view a larger version of this figure.
The proposed dissection manual is useful for performing a complete anatomical dissection of the middle ear. Exhibiting a thorough knowledge of middle ear anatomy is a fundamental prerequisite for any middle ear surgical intervention. Cadaveric dissection allows training the handling of the camera and the surgical instruments in the EAC. For a novice in EES, the coordination between the eye and the instrument as well as the correct handling of the endoscope (no bending, maneuvering between important anatomical structures as the ossicles in a limited space and the two-dimensional image) are critical steps to get started with this emerging surgical technique.
The main limitation of this model as compared to the real surgical situation is the lack of bleeding. This applies for any cadaveric dissection model. Recently, Dedmond et al. described a temporal bone model, where bleeding was simulated during the elevation of the TMF. This model may in fact be a good option for advanced surgeons already used to EES. In our experience, the initial familiarization with EES should be as easy as possible, since the handling of the instruments is already a challenging task. The cadaveric dissection is considered the gold standard for surgical education. However, it is subject to high costs and ethical regulations. In comparison, synthetic or animal models may overcome these issues8,11. However, in synthetic models the tactile feeling for the tissues is difficult and the resolution of 3D printing is not yet able to provide all details an anatomical specimen can. In contrast, the animal model provides excellent tissue properties but has a different anatomy. We can consider the cadaveric model the sole suitable model for anatomical teaching, whereas synthetic and animal models provide cheap alternatives for surgical training.
Compared to the microscopic technique for middle ear dissection, the endoscope allows the observation and preparation of the delicate middle ear structures through a natural orifice, the EAC. Hence, no bone has to be removed for access purposes and the middle ear can be studied in its natural state. Moreover, the endoscope allows a very close observation of any anatomical structure and thus also magnification without losing illumination. Of course, the endoscopic approach does not teach mastoidectomy, which may be performed on the same specimen after endoscopic dissection. The endoscopic technique for ear surgery is internationally spreading and therefore the need for suitable surgical training will increase.
The authors have nothing to disclose.
None
Endoscopes: 3mm diameter, 15cm length, 0° and 45° | Karl Storz | ||
Otologic dissectors, round knifes, hooks, curette, microscissors (Bellucci) and microforceps (Hartmann) | Karl Storz | ||
Straight and curved suction tubes | Karl Storz | ||
Flexible hook | |||
Scissors | |||
Video Equipment – HD-scree – 3-CCD camera – Xenon light source |
Karl Storz | ||
Cadaveric Head | – | ||
Vacuum matress | |||
Aspirator | |||
Consumables – Water to rinse – Antifog solution – Cotton pads – Cottonoid pledges – Gown – Gloves – Mask |