Summary

隔离容器的血管扩张和细胞外基质的紧皮肤小鼠隔离

Published: March 24, 2017
doi:

Summary

We describe the isolation of cardiac extracellular matrix from C57Bl/6J control mice, tight-skin mice, and tight-skin mice treated with the IRF5 inhibitory peptide. We also describe the vasodilation studies on the isolated vessels from C57Bl/6J, tight-skin mice and tight-skin mice treated with the IRF5 inhibitory peptide.

Abstract

The interferon regulatory factor 5 (IRF5) is crucial for cells to determine if they respond in a pro-inflammatory or anti-inflammatory fashion. IRF5’s ability to switch cells from one pathway to another is highly attractive as a therapeutic target. We designed a decoy peptide IRF5D with a molecular modeling software for designing small molecules and peptides.

IRF5D inhibited IRF5, reduced alterations in extracellular matrix, and improved endothelial vasodilation in the tight-skin mouse (Tsk/+). The Kd of IRF5D for recombinant IRF5 is 3.72 ± 0.74 x 10-6 M as determined by binding experiments using biolayer interferometry experiments. Endothelial cells (EC) proliferation and apoptosis were unchanged using increasing concentrations of IRF5D (0 to 100 µg/mL, 24 h). Tsk/+ mice were treated with IRF5D (1 mg/kg/d subcutaneously, 21 d). IRF5 and ICAM expressions were decreased after IRF5D treatment. Endothelial function was improved as assessed by vasodilation of facialis arteries from Tsk/+ mice treated with IRF5D compared to Tsk/+ mice without IRF5D treatment. As a transcription factor, IRF5 traffics from the cytosol to the nucleus. Translocation was assessed by immunohistochemistry on cardiac myocytes cultured on the different cardiac extracellular matrices. IRF5D treatment of the Tsk/+ mouse resulted in a reduced number of IRF5 positive nuclei in comparison to the animals without IRF5D treatment (50 µg/mL, 24 h). These findings demonstrate the important role that IRF5 plays in inflammation and fibrosis in Tsk/+ mice.

Introduction

细胞生长和细胞死亡的免疫应答的调节是至关重要的转录因子家族的干扰素调节因子的作用。 IRF5被高亮显示为用于免疫反应类型1之间的调控,炎症促进反应和2型,免疫应答靶向组织修复的关键。 IRF5是在癌症1,和自身免疫2,3,4,5键。

紧皮肤小鼠(TSK / +)为组织纤维化和硬皮病一个模型由于在原纤蛋白-1基因的复制突变。此突变导致一个紧皮肤和增加结缔组织。这些小鼠发展心肌炎症,纤维化和最后心脏衰竭5,6,7,> 8,9。硬皮病是影响美国6约有15万名患者的自身免疫性疾病纤维化。这种疾病的特点是内部器官包括心脏7,8,9,10,11的纤维化。

该研究的天性,需要抑制肽的设计。被选择了该软件的方法利用噬菌体展示传统的方法。的软件的方法是更容易和耗时更少。该RCSB数据库是用来确定适当的结合位点12。研究新设计的肽与重组蛋白的相互作用和集中的结合参数,使用一种技术,称为生物层干涉测量法。生物层干涉测量是基于生物传感器techniqUE决定使用生物传感器和具有约束力的样本结合亲和力,关联和解除关联。该传感器可以是荧光,luminescently,辐射测量和比色标记。测量是基于质量增加或耗竭类似关联和解除关联13,14。本研究的目的是要了解IRF5的心肌炎症和纤维化中的作用。目标是洞察IRF5的在组织纤维化和硬皮病的发展中的作用。

Protocol

本研究是在严格按照指南中的建议,美国国立卫生研究院的实验动物的护理和使用进行。该协议被批准的机构动物护理和使用委员会(协议:AUA#1517)。所有涉及小鼠的研究是与小灵通的政策相一致进行。 1.诱饵肽的设计找到IRF5的3D结构,立足于它的设计。设计一个17聚体,称为IRF5D(ELDWDADDIRLQIDNPD),其中,天门冬氨酸(D)取代为丝氨酸(S)在421模仿磷酸化IRF5 – 438(ELSWSADSIRLQISNP…

Representative Results

在图1中展示了结果表明如何设计的肽。 图1,左上,示出了由多个激酶磷酸化在IRF5的区域(2黄色箭头之间,氨基酸(AA)425-436)。 图1,右上,显示了一个黄色椭圆形,其中IRF5的磷酸化结构域结合。 3DSH的二聚结构被旋转以观察一个裂口或谷到螺旋2(aa303-312)的左侧。这是IRF5的磷酸尾域假定当它被完全激活( 即 ,丝氨酸磷?…

Discussion

的目标是设计一个IRF5抑制剂阐明IRF5的炎症,纤维化和血管功能在啧/ +小鼠的心脏的作用。调查结果是IRF5D不诱导增殖或凋亡。此外,炎症减少和血管功能的改善。这些数据表明,IRF5在炎症和纤维化的啧/ +小鼠的心脏的发展的重要机械作用,它具有作为治疗靶的潜力。

第一步是设计的抑制剂。当肽被设计,有几点必须考虑到:序列长度,二级结构的残基容易发生氧化,氨基酸…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH grants HL-089779 (DW), HL-112270 (KAP) and HL-102836 (KAP) and Cimphoni Life Sciences (part of DW salary). The authors thank Meghann Sytsma for editing the manuscript.

Materials

 Triton X 100 Sigma Aldrich X100- 100ml
Alexa 488-labeled goat anti-mouse IgG antibody  Thermo Fisher A11001
Bardford reagent Thermo Fisher 23200 Pierce 
Biosensors Forte-Bio MR18-0009
CD64 (H-250) Santa Cruz Biotechnologies sc-15364
CellEvent Caspase-3/7 Substrate Thermo Fisher/Life Technologies C10427
CellTiter AQueous One Solution Cell Proliferation Assay kit Promega G3580 Promega
DAPI (4′,6-diamidino-2-phenylindole) Thermo Fisher D-1306 1:1000 dilution in PBS
donkey anti rat Alexa 488 Thermo Fisher A-21208 1:1000 dilution in PBS
ECL plus GE healthcare/Amersham RPN2133 After a lot of trial and error we came back to this one
Eclipse TE 200-U microscope with EZ C1 laser scanning software Nikon
goat anti rabbit Alexa 488 Thermo Fisher A-11008 1:1000 dilution in PBS
HRP  anti-goat Santa Cruz Biotechnologies sc-516086 !:10000 dilution in TBS
HRP donkey anti-mouse Santa Cruz Biotechnologies sc-2315 1:10000 dilution in TBS
ICAM-1 antibody Santa Cruz Biotechnologies sc-1511 1:200 dilution in PBS
IRF5 antibody (H56) Santa Cruz Biotechnologies sc-98651
Micro plate reader Elx800 Biotek
NIMP neutrophil marker Santa Cruz Biotechnologies sc-133821 1:200 dilution in PBS
Octet RED Forte Bio protein-protein binding
Peptide design  Medit SA software RCSB.org
Recombinant IRF5 protein synthesis TopGene Technologies protein expression, synthesis service
sodium dodecyl phosphate Sigma Aldrich 436143 detergent
Ketamine Pharmacy Schedule III controlled substance, presciption required 
Xylazine MedVet
3.5X-45X Trinocular Dissecting Zoom Stereo Microscope with Gooseneck LED Lights Am Scope SKU: SM-1TSX-L6W
Zeba Desalting Columns Thermofisher 2161515
Endothelial Basal Media EBM Bullet kit Lonza CC-3124 kit contains growth supplemets
VIA-100K  Boeckeler Instruments
4-15% TGX gel Bio-Rad 5671081
MedSuMo software Medit, Palaiseau, France
Laemmli Buffer BioRad

Referencias

  1. Bi, X., et al. Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Breast Cancer Res. 13 (6), 111 (2011).
  2. Dideberg, V., et al. An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet. 16 (24), 3008-3016 (2007).
  3. Graham, R. R., et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat.Genet. 38 (5), 550-555 (2006).
  4. Krausgruber, T., et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12 (3), 231-238 (2011).
  5. Eames, H. L., Corbin, A. L., Udalova, I. A. Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease. Transl Res. 167 (1), 167-182 (2016).
  6. Mayes, M. D., et al. Immunochip analysis identifies multiple susceptibility Loci for systemic sclerosis. Am J Hum Genet. 94 (1), 47-61 (2014).
  7. Dimitroulas, T., et al. Micro-and Macrovascular Treatment Targets in Scleroderma Heart Disease. Curr Pharm Des. , (2013).
  8. Botstein, G. R., LeRoy, E. C. Primary heart disease in systemic sclerosis (scleroderma): advances in clinical and pathologic features, pathogenesis, and new therapeutic approaches. Am Heart J. 102 (5), 913-919 (1981).
  9. Oram, S., Stokes, W. The heart in scleroderma. Br Heart J. 23 (3), 243-259 (1961).
  10. Xu, H., et al. 4F decreases IRF5 expression and activation in hearts of tight-skin mice. PLoS One. 7 (12), 52046 (2012).
  11. Steen, V. The heart in systemic sclerosis. Curr.Rheumatol.Rep. 6 (2), 137-140 (2004).
  12. Deshpande, N., et al. The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 33, D233-D237 (2005).
  13. Concepcion, J., et al. Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization. Comb Chem High Throughput Screen. 12 (8), 791-800 (2009).
  14. Matthew, A. Current biosensor technologies in drug discovery. Drug Discovery. , 69 (2006).
  15. Doppelt-Azeroual, O., Moriaud, F., Adcock, S. A., Delfaud, F. A review of MED-SuMo applications. Infect Disord Drug Targets. 9 (3), 344-357 (2009).
  16. Kim, S., Jang, J., Yu, J., Chang, J. Single mucosal immunization of recombinant adenovirus-based vaccine expressing F1 protein fragment induces protective mucosal immunity against respiratory syncytial virus infection. Vaccine. 28 (22), 3801-3808 (2010).
  17. Frenzel, D., Willbold, D. Kinetic Titration Series with Biolayer Interferometry. PloS one. 9 (9), 106882 (2014).
  18. Ou, J., et al. L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation. 107 (18), 2337-2341 (2003).
  19. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem. 72 (1-2), 248-254 (1976).
  20. Bauer, P. M., et al. Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric-oxide synthase. J.Biol.Chem. 278 (17), 14841-14849 (2003).
  21. Weihrauch, D., et al. An IRF5 Decoy Peptide Reduces Myocardial Inflammation and Fibrosis and Improves Endothelial Cell Function in Tight-Skin Mice. PLoS One. 11 (4), 0151999 (2016).
  22. Hoogenboom, H. R., et al. Antibody phage display technology and its applications. Immunotechnology. 4 (1), 1-20 (1998).
  23. Roehm, N. W., Rodgers, G. H., Hatfield, S. M., Glasebrook, A. L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 142 (2), 257-265 (1991).
  24. Van Tonder, A., Joubert, A. M., Cromarty, A. D. Limitations of the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes. 8 (1), 1 (2015).
  25. Ott, H. C., et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 14 (2), 213-221 (2008).
  26. Ou, J., et al. L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation. 107 (18), 2337-2341 (2003).
  27. Weihrauch, D., et al. Effects of D-4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight-skin mice. Am J Physiol Heart Circ Physiol. 293 (3), 1432-1441 (2007).
  28. Roy, S., P, P., Mavragani, C. IRF-5 – A New Link to Autoimmune Diseases. Autoimmune Disorders – Pathogenetic Aspects. , 35 (2011).

Play Video

Citar este artículo
Weihrauch, D., Krolikowski, J. G., Jones, D. W., Zaman, T., Bamkole, O., Struve, J., Pagel, P. S., Lohr, N. L., Pritchard, Jr., K. A. Vasodilation of Isolated Vessels and the Isolation of the Extracellular Matrix of Tight-skin Mice. J. Vis. Exp. (121), e55036, doi:10.3791/55036 (2017).

View Video