Culturing human Mesenchymal Stromal Cells (hMSCs) with autologous serum, reduces the risks of rejection by xenogeneic material and other negative effects. It also allows for the recovery of a subset of mesodermal progenitors, which can deliver fresh hMSCs. Embedding hMSCs in an autologous fibrin clot enables easy handling and effective surgical implantation.
Human Mesenchymal Stromal Cells (hMSCs) are cultured in vitro with different media. Limits on their use in clinical settings, however, mainly depend on potential biohazard and inflammation risks exerted by xenogeneic nutrients for their culture. Human derivatives or recombinant materials are the first choice candidates to reduce these reactions. Therefore, culture supplements and materials of autologous origin represent the best nutrients and the safest products.
Here, we describe a new protocol for the isolation and culture of bone marrow hMSCs in autologous conditions — namely, patient-derived serum as a supplement for the culture medium and fibrin as a scaffold for hMSC administration. Indeed, hMSC/fibrin clot constructs could be extremely useful for several clinical applications. In particular, we focus on their use in orthopedic surgery, where the fibrin clot derived from the donor's own blood allowed effective cell delivery and nutrient/waste exchanges. To ensure optimal safety conditions, it is of the utmost importance to avoid the risks of hMSC transformation and tissue overgrowth. For these reasons, the approach described in this paper also indicates a minimally ex vivo hMSC expansion, to reduce cell senescence and morphologic changes, and short-term osteo-differentiation before implantation, to induce osteogenic lineage specification, thus decreasing the risk of subsequent uncontrolled proliferation.
Human Mesenchymal Stromal Cells (hMSCs) represent one of the best cell sources for use in tissue engineering for promoting osteogenesis1,2. They are easily isolated from bone marrow and other adult tissues, and express typical surface markers such as CD90, CD105, CD731. Moreover, they can differentiate into several cell types, such as osteoblasts, chondrocytes and adipocytes3. Their therapeutic effects are attributed to their regenerative and trophic properties4. hMSCs could be used in orthopedic surgery, as well as in other regenerative clinical applications. They are preferably combined with scaffolds, to improve the clinical outcome5.
Compared to other materials, the fibrin gel shows interesting properties such as adhesiveness, resorption and efficient transport of nutrients, which make it extremely useful for a variety of tissue engineering applications6,7.
The main challenge in translating a tissue engineering approach into clinical applications is obtaining a fully-biocompatible and biosafe scaffold and a xeno-free culture medium that avoids any infective or reactive effect.
In our method, fibrin gel, derived from the patient's own blood, and autologous serum, for in vitro hMSCs culture, were employed as a possible therapeutic solution in the orthopedic field8.
For clinical purposes, hMSCs are usually administrated via two main procedures: (i) the "one-step" procedure (i.e., minimal manipulation), which allows the auto transplant of bone marrow, either whole or concentrated (i.e., mononuclear cells), during surgery; and (ii) the "two-step" procedure (i.e., extensive manipulation), which is based on the ex vivo expansion of hMSCs to increase their yield before implantation, and requires GMP facilities9. Interestingly, culturing cells with human adult serum instead of bovine calf serum allows the recovery, together with hMSCs, of a subset of cells (1 – 10% in mononuclear cultures) called Mesodermal Progenitor Cells (MPCs), capable of in vitro differentiation into fresh hMSCs10,11. Thus, hMPCs may play a significant role in the regenerative process when compared with hMSCs alone12,13. Finally, short-term osteo-induction pushes hMSCs to start their differentiation into the osteogenic lineage without losing their proliferative potential and viability12. These results confirm previous studies that have reported enhanced in vivo bone formation by hMSCs, followed by a preculture in osteogenic medium14. Moreover, an autologous plasma clot as a scaffold for cell delivery can be easily manipulated by the surgeon and molded to fit the shape of the bone cavity13.
Therefore, this method can be extremely useful for those researchers and clinicians who aim at translating their hMSC-based therapy from the bench to the bedside in orthopedic applications.
The present protocol was developed in accordance with the World Medical Association's Declaration of Helsinki regarding the ethical conduct of research involving humans. It was approved by the Ethical Committee of the Azienda Ospedaliero-Universitaria Pisana.
NOTE:
Bone marrow was obtained from patients undergoing routine total hip replacement surgery (according to step 1.1)15; plasma for the clot preparation was obtained from autologous peripheral blood13; autologous serum, as a supplement for the culture medium, was collected from an autologous whole-blood apheresis. All the patients received detailed information about the procedure and signed a written consent form.
1. Collection of the Bone Marrow Sample
2. Preparation of Autologous Plasma
3. Preparation of the Autologous Serum
4. Preparation of the Expansion Medium
5. Isolation of hMSCs from the Bone Marrow
6. Culture of hMSCs in the Presence of Autologous Serum
7. Preparation of an Osteogenic Medium with Pharmaceutical Supplements
8. Osteogenic Pre-induction and Recovery of hMSCs
9. Preparation of hMSC/fibrin Clot Constructs
10. Cell Viability Assay
11. Histologic Evaluation of Cell Viability and Calcium Deposition inside Fibrin Clot Constructs
12. CFU-F Assay
Preparation of autologous serum
Plasma coagulation, performed by adding calcium gluconate to the transfer bag, allows the recovery of autologous serum in large amounts, as required for the hMSC culture. Indeed, with this technique, it is possible to achieve up to 200 mL of serum (Figure 1).
HMSC isolation, culture and differentiation using autologous serum
Bone marrow mononuclear cells are isolated using a density gradient, which gives rise to an intermediate ring layer (Figure 2A). By plating these cells and removing the nonadherent ones with washing, it is possible to isolate hMSCs (Figure 2B). Under autologous culture conditions, a subset of cells, called MPCs, are detected at P0 and in percentages up to 10%, depending on patient variability (Figure 2B). MPCs are still present after replating (i.e., P1) if the protease is used for cell passaging (Figure 2C). hMSCs isolated and cultured in an autologous setting maintain their capability to differentiate towards the three well-known mesodermal lineages (osteogenic, adipogenic, and chondrogenic). The differentiation assays were performed to compare the hMSC population identity with those obtained using standard (nonautologous) culture conditions. As functionality assays for this protocol, von Kossa staining, osmium tetroxide staining, and Alcian Blue staining at pH 1 were chosen in place of those suggested by the differentiation media manufacturer (see Table of Materials) (Figure 2D).
Preparation, viability and histologic characterization of MSC/fibrin clot constructs
The hMSCs are dispersed in plasma, which is cross-linked by calcium gluconate in a 50 mL tube, leading to the formation of a jelly disc surrounded by its supernatant (Figure 3A). Inside these plasma clots, the hMSCs are viable, as demonstrated by the color change of the cell viability dye t24 from blue (control without cells) to pink (cellularized clot) (Figure 3B). Cell viability inside the clot is confirmed by H&E staining, showing a well-preserved cell morphology (Figure 3C). Furthermore, a minimal osteoinduction just before the second cell harvest gives rise to preliminary calcium deposition by stimulated hMSCs (Figure 3D).
Colony Forming Unit
The presence of hMSC colonies after 2 weeks in culture is shown by the CFU-F assay (Figure 4).
Application of MSC/fibrin clot construct in bone non-union
HMSC/fibrin clot constructs obtained as described in this method (step 1.1) were successfully applied to treat severe upper limb nonunions in 8 compassionate cases13. Long-term (maximum 7.6 months) assessment confirmed successful clinical and functional outcomes for all patients, without evidence of tissue overgrowth or tumor formation.
Figure 1. Preparation of Autologous Serum.
(A) The plasma unit is transferred in a transfer bag using the spike; (B) The plasma is coagulated by injecting calcium gluconate through the port connector; (C) A blood-bag centrifuge is used to separate the serum. Please click here to view a larger version of this figure.
Figure 2. hMSC Isolation, Culture and Differentiation using Autologous Serum.
(A) The mononuclear cell layer (in the blue line window) obtained after bone marrow centrifuging with a density gradient; (B) The cell culture as it appears at P1; (C) Cell culture as it appears at P0 (primary culture); (B – C) Arrows show presence of MPCs in the MSC culture. Scale bar is 100 µm; (D) Histochemical results of multilineage differentiation assays. Osteogenic differentiation is assessed using von Kossa staining for mineral matrix deposition in black, adipogenic differentiation is shown by presence of fatty vacuoles, stained in black by osmium tetroxide, and chondrogenic differentiation is displayed by the presence of sulfated glycosaminoglycans, which are stained in cyan by Alcian Blue staining at pH 1. Scale bar is 50 µm. Please click here to view a larger version of this figure.
Figure 3. Preparation, Viability and Histologic Characterization of MSC/fibrin Clot Constructs.
(A) The hMSC/fibrin clot construct as it appears after cross-linking; (B) Outcomes of AB assay: the MSCs are viable inside fibrin clot, as demonstrated by the color change of the cell viability dye (t24), from blue (control without cells, on the right) to pink (cellularized clot, on the left). (C - D) Histochemical results of hMSC/fibrin clot constructs. Scale bar is 50 µm. (C) Hematoxylin and Eosin staining showing viable cells embedded in the fibrin matrix; (D) Mineral matrix deposition stained in black by von Kossa staining, which confirms an initial osteogenesis. Please click here to view a larger version of this figure.
Figure 4. CFU-F Assay.
Picture of a flask cultured with hMSCs stained by May-Grunwald/Giemsa method. The zoomed-in area is a light-micrograph showing the morphology of a hMSC colony. Scale bar is 100 µm. Please click here to view a larger version of this figure.
Figure 5. Application of hMSC/fibrin Clot Construct in Bone Nonunion.
(A) X-ray of the upper limb of a patient affected by pseudarthrosis; (B) hMSC/fibrin clot construct just before implantation; (C) Surgical application of the hMSC/fibrin clot construct; (D) X-ray of the upper limb of the same patient after 5 years. This figure is republished from Giannotti S. et al. with minimal modifications13. Please click here to view a larger version of this figure.
The critical steps of this protocol concern the use of human adult serum and protease, which allow to obtain a biosafe hMSC therapy. In particular, the human adult serum enables isolation and maintenance, while protease ensures the harvest, of MPCs. These are immature cells present in the bone marrow that can give rise to fresh hMSCs, thus ensuring a reservoir of viable hMSCs along the culture time. Not all the MPCs can be collected, since increasing the exposure time to the protease activity is detrimental to hMSC viability. For this reason, a 10 min protease incubation was selected as optimal compromise between the recovery of MPCs and the viability of hMSCs. Another critical step is osteodifferentiation time. Indeed, an extensive in vitro osteodifferentiation would considerably reduce cell viability, thus affecting the final bone formation in vivo. The last critical step consists in availing of an autologous bioresorbable scaffold, which is obtained by embedding the cells (hMSCs and MPCs) in a fibrin gel from plasma clotting.
A key step to enhance the yield of MPCs is to seed mononuclear cells at higher concentration. Using apheresis procedures to obtain plasma and treating it with calcium gluconate makes it possible to achieve autologous serum in large amounts. It has been observed that human serum as a medium supplement is comparable to Fetal Bovine Serum (FBS) in hMSC cultures. However, in our experience, a complete medium supplemented with FBS contributes to faster senescence than human adult serum. A significant step is that of administering a minimal osteoinduction to hMSCs. Indeed, this treatment leads the cells to easily differentiate towards the osteogenic lineage, thus being useful to avoid further cell transformation in vivo. To maintain a good viability of minimally osteoinduced hMSCs, it is recommended to follow carefully the recommendations described in steps 6.5. and 8.2., including handling, centrifuging and medium amounts to be added. If an apheresis procedure is not available, it is still possible to carry out this protocol by performing multiple blood draws to the patient or, in alternative, by purchasing pooled AB sera. Obviously, in order to bring this protocol from the bench-to-bedside, it is mandatory to have GMP cell factories, or equivalents, available.
Limitations to the application of this technique concern the anemic, hematological-oncology and orthopedic patients affected by osteomyelitis., Drawing large amounts of blood from anemic patients, should be avoided. In oncologic patients, the quality of the cell samples is affected by chemotherapy treatments, whereas in osteomyelitis patients the infection can affect the final outcome. In all the cases in which the autologous serum is insufficient or unsuitable, pooled male AB sera represent a good alternative.
Using cell/fibrin clot constructs for possible clinical applications is crucial to release a completely autologous cell therapy, which could be easy to handle and mold during surgery, resulting in excellent outcomes to treat bone non-unions13. For clinical purposes, hMSCs are usually administered via two main procedures: minimal manipulation and extensive manipulation9. To overcome the problems related to an extensive ex vivo culture, such as abnormalities in cell morphology and size18, we performed a short time ex vivo cell expansion and osteo-differentiation (only 4 d).
The xeno-free protocol described in this paper, together with the short cell expansion and osteodifferentiation times, demonstrated to be relevant in clinics in order to obtain fast bone production in vivo, without evidence of tissue overgrowth and transformation, thus confirming its efficacy and long-term safety in bone repair (Figure 5)13.
The methodology presented in this report is aimed at demonstrating the efficacy and safety of hMSC in vitro expansion in autologous conditions for possible use in orthopedic surgery. This protocol employs hMSCs isolated from bone marrow and cultured in a medium supplemented with autologous serum and embedded in autologous fibrin clot, thus ensuring a completely autologous cell therapy. The two-fold osteogenic induction, just before the second detachment, improves hMSC ability to differentiate into osteoblasts. As a result, this technique is particularly suitable for applications in bone defects, since it is not limited to pseudarthrosis. Possible future applications could involve talus cyst and bone loss management.
The authors have nothing to disclose.
This study was funded by the Tuscany Region (grant number 539999_2014_Petrini_CUCCS). The authors would like to thank Prof. S. Berrettini for authorizing the use of the Otolab laboratory and instruments, and the surgery staff from the Orthopedic Clinic II of the University of Pisa, for the fundamental cooperation in sample harvesting. The support provided by Dr. F. Scatena is gratefully acknowledged. Finally, many thanks are due to Mr. J.G. De La Ossa for his precious contribution to histologic processing.
Triple Select (1x) | GIBCO, LIFE TECHNOLOGIES | 12563-029 | cell culture |
Trypan blue stain | GIBCO, LIFE TECHNOLOGIES | 15250061 | cell culture |
DMEM-LG, no glut, no phenol red | GIBCO, LIFE TECHNOLOGIES | 11880-028 | cell culture |
Glutamax (100X) | Gibco, Life Technologies | 35050038 | cell culture |
Penicillin Streptomycin sol. | Gibco, Life Technologies | 15140122 | cell culture |
Alamar Blue (AB) | Gibco, Life Technologies | DAL1025 | proliferation/viability assay |
Ficoll-Paque Plus | GE Healthcare | 17-14440-02 | cell culture |
D-PBS | Gibco, Life Technologies | 14190-094 | cell culture |
StemMACS AdipoDiff Media | Miltenyi Biotech | 130-091-677 | cell culture |
StemMACS ChondroDiff Media | Miltenyi Biotech | 130-091-679 | cell culture |
hMSC Osteogenicdiff BulletKit | Euroclone | LOPT3002 | cell culture |
Vitamin C (ascorbic acid) | Bayer | ATC Code: A11GA01 | Pharmaceutical grade drug |
Flebocortid Richter (hydrocortisone) | Aventis Pharma | ATC Code: H02AB09 | Pharmaceutical grade drug |
Victor X3, reader | PerkinElmer | 2030 multilabel reader | proliferation/viability assay |
Silver nitrate | Sigma Aldrich | 209139 | histological assay |
Pyrogallol | Sigma Aldrich | 16040 | histological assay |
Sodium Thiosulphate | Sigma Aldrich | S8503 | histological assay |
Histoplast LP | Thermo Scientific | 8332 | histological assay |
Methanol | Sigma Aldrich | 32213 | histological assay |
Ethanol | Sigma Aldrich | 2860 | histological assay |
Nuclear fast red | Sigma Aldrich | 60700 | histological assay |
Formalin | Bio-optica | 05-K01009-X40 | histological assay |
Eosin B | Sigma Aldrich | 45260 | histological assay |
DPX | Sigma Aldrich | 6522 | histological assay |
Haematoxylin | Sigma Aldrich | H3136 | histological assay |
Aluminium Sulphate | Sigma Aldrich | 202614 | histological assay |
Xylol | Sigma Aldrich | 534056 | histological assay |
Microtome | Leika | histological assay | |
May Grunwald | Sigma Aldrich | MG1L-1L | histological assay |
Giemsa | Sigma Aldrich | 32884-250ML | histological assay |
Transfer bag | Biomérieux | BC0300031 | cell culture |
Filtration kit | Macopharma | BC0800010 | cell culture |
Calcium Gluconate | Galenica Senese | Pharmaceutical grade drug | |
Bact Alert | Biomérieux | 259790 anaerobic | microbiological assay |
Bact Alert | Biomérieux | 259789 aerobic | microbiological assay |
Steryle Luer-Lok Syringe 50 ml | BD Plastipak | 300865 | cell processing |
Heraeus Cryofuge 6000i | Thermo Scientific | blood bag centrifuging | |
SL16R Centrifuge | Thermo Scientific | blood tube centrifuging |