Summary

bir bis-iminoguanidinium ligand ile seçici kristalleştirme ile Sülfat Ayırma

Published: September 08, 2016
doi:

Summary

Bir bis (iminoguanidinium) ligand ve sülfat seçici olarak ayrılması kendi kullanım yerinde, sulu sentezi için bir protokol verilmektedir.

Abstract

A simple and effective method for selective sulfate separation from aqueous solutions by crystallization with a bis-guanidinium ligand, 1,4-benzene-bis(iminoguanidinium) (BBIG), is demonstrated. The ligand is synthesized as the chloride salt (BBIG-Cl) by in situ imine condensation of terephthalaldehyde with aminoguanidinium chloride in water, followed by crystallization as the sulfate salt (BBIG-SO4). Alternatively, BBIG-Cl is synthesized ex situ in larger scale from ethanol. The sulfate separation ability of the BBIG ligand is demonstrated by selective and quantitative crystallization of sulfate from seawater. The ligand can be recycled by neutralization of BBIG-SO4 with aqueous NaOH and crystallization of the neutral bis-iminoguanidine, which can be converted back into BBIG-Cl with aqueous HCl and reused in another separation cycle. Finally, 35S-labeled sulfate and β liquid scintillation counting are employed for monitoring the sulfate concentration in solution. Overall, this protocol will instruct the user in the necessary skills to synthesize a ligand, employ it in the selective crystallization of sulfate from aqueous solutions, and quantify the separation efficiency.

Introduction

Rekabetçi sulu çözeltilerden hidrofil oxoanions (örneğin, sülfat, kromat, fosfat) seçici ayrılması çevresel iyileştirme alaka, enerji üretimi ve insan sağlığı ile temel bir sorun teşkil etmektedir. 1,2 Sülfat özellikle sudan dolayı ayıklamak zor onun içsel isteksizlik kendi hidrasyon küresini döken ve daha az polar ortamlara göç ederler. 3. sulu sülfat çıkarma daha verimli yapma tipik sentezlemek ve genellikle zehirli maddeler ve çözücüler içeren arındırmak için zor ve sıkıcı olan karmaşık reseptörleri gerektirir. 4,5

Seçici kristalleşme sudan ayrılmasını sülfat için basit ama etkili bir alternatif sunuyor. 6-9 gibi Ba 2+, Pb 2+ veya Ra 2+ formu çok çözünmez sülfat tuzları gibi bazı metal katyonları, sülfat ayrılık kullanımları her zaman pratik olmamasına rağmen nedeniyle yüksek TOXI içinşehir ve bazen düşük seçicilik. sülfat precipitants organik ligantları kullanan, organik moleküllerin karakteristik tasarım yapısal farklılıkları ve amenability yararlanır. Sulu sülfat kristalizasyon için ideal bir organik ligand su içinde çözünür olması, ancak, nispeten kısa bir süre içinde ve iyonların yüksek konsantrasyonlarının varlığında, çözünmeyen sülfat tuzu ya da kompleks oluşturacaktır. Ayrıca, sentez ve geri dönüşüm kolay olmalıdır. Bu tür bir ligand, 1,4-benzen-bis (iminoguanidinium) (BBIG), kendi kendine bir araya iki ticari olarak temin edilebilir ön-maddeleri, tereptalaldehid ve aminoguanidinium klorür in situ, en son, sulu sülfat ayrılması son derece etkili olduğu tespit edilmiştir. 10 ligandı suda çözünür klorür formunda, ve seçici olarak kolayca basit bir filtreleme ile solüsyondan çıkarılabilir son derece çözünür bir tuza sülfat ile kristalize olur. BBIG ligandı sonra, deprotonasyon ile elde edilebilirqueous NaOH ve bir ayırma döngüsünün Lütfen, sulu HCI ile klorür formuna dönüştürülür, ve tekrar kullanılabilen nötr bis-iminoguanidine, kristalizasyonu. sudan sülfatın uzaklaştırılması bu ligandın etkinliği çözeltide kalan sülfat konsantrasyonu izleme anyonun eser miktarlarda doğru ölçümü sağlar daha gelişmiş bir teknik gerektirir artık önemsiz bir görev olduğu kadar büyüktür. Bu amaçla, β sıvı sintilasyon sayımı ile bağlantılı olarak radyo-etiketlenmiş 35S sülfat izleyici bir teknik yaygın sıvı-sıvı ekstre ayırımlar kullanılabilmektedir ve en son izleme sülfat kristalizasyon etkili olduğu gösterilmiştir, kullanılmıştır. 8

Bu protokol, in situ BBIG ligandının sentezi ve sulu çözeltilerden sülfat tuzu olarak kristalizasyonda tek kap gösterilmiştir. Ligandın 11 ex-situ sentezi da ortak olarak sunulmuşturKullanıma hazır olana kadar kristal formunda saklanabilir BBIG-Cl büyük miktarlarda üretimi için nvenient yöntemi. önceden hazırlanmış BBIG-Cı ligand kullanılarak deniz suyundan sülfat çıkarılması daha sonra gösterilmiştir. Son olarak, 35 S-etiketli sülfat ve deniz suyundaki sülfat konsantrasyonunun ölçülmesi için β sıvı sintilasyon sayımı kullanımı gösterilmiştir. Bu protokol, sulu anyon ayrılması için seçici kristalizasyon kullanımını keşfetmek geniş ilgilenenler için bir öğretici sağlamak için tasarlanmıştır.

Protocol

1. 1,4-benzen-bis (iminoguanidinium) klorid (BBIG-CI) Yerinde 1,4-benzen-bis (iminoguanidinium) Klorür Ligand (BBIG-Cl) sentezi ve sülfat ile olan kristalizasyonda Manyetik bir karıştırma çubuğu ile donatılmış bir 25 mL yuvarlak tabanlı bir şişe içinde 0.067 tereptalaldehid g deiyonize su, 10 ml aminoguanidinium klorid, 0.5 M sulu çözelti, 2.2 ml. 20 ° C de dört saat süre ile manyetik olarak solüsyonu ilave edin. Bu BBIG-CI hafif san bir çözelti sağl…

Representative Results

BBIG-SO 4 (Şekil 1) toz X-ışını kırınım deseni kristalize bir katı kimliğinin kesin doğrulama sağlar. referans bir karşı elde edilen desen karşılaştırılmasında, pik şiddeti tepe konumlandırma az önemlidir. referans gösterilen tüm güçlü tepe noktası elde numunede mevcut olması gerekmektedir. Referans desen bulunmadığına örnek güçlü tepe görünümü yabancı maddelerin varlığına işaret etmektedir. <p class="jove_cont…

Discussion

Bu teknik oldukça sağlam hale getirir yazılı prosedür, birçok sapmalar oldukça hoşgörülü olduğunu. takip edilmelidir ancak iki kritik adımlar vardır. İlk olarak, BBIG-Cı ligandı mümkün olduğu kadar saf olmalıdır. Yabancı maddeler, sadece kristalleşme ve elde edilen sülfat tuzu çözünürlüğü etkileyebilir, ancak, aynı zamanda zor çözeltiden niceliksel sülfat çıkarılması için gerekli olan miktarını hesaplamak için yapacaktır. Bu tekniğin ince değişikliklere çok duyarlı olabi…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. We thank the University of North Carolina Wilmington for providing the seawater.

Materials

Terephthalaldehyde Sigma T2207
Aminoguanidinium Chloride Sigma #396494
Sodium Sulfate Sigma #239313
Barium Chloride Sigma #342920 Highly Toxic
Ethanol Any Reagent Grade (190 proof)
Sodium Hydroxide EMD SX0590-1
Hydrochloric Acid Sigma #258148
Filter Paper Any Any qualitative or analytical filter paper will work
Syringe Filter (0.22 um) Any Nylon filter
35S Labeled Sulfate Perkin Elmer NEX041005MC
Ultima Gold Scintillation Cocktail Perkin Elmer #6013329
Polypropylene Vials  Any
Disposable Syringe (2-3 mL) Any Any disposable plastic syringe works

Referencias

  1. Langton, M. L., Serpell, C. J., Beer, P. D. Anion Recognition in Water: Recent Advances from Supramolecular and Macromolecular Perspective. Angew. Chem. Int. Ed. 55, 1974-1987 (2016).
  2. Busschaert, N., Caltagirone, C., Van Rossom, W., Gale, P. A. Applications of Supramolecular Anion Recognition. Chem. Rev. 115, 8038-8155 (2015).
  3. Moyer, B. A., Custelcean, R., Hay, B. P., Sessler, J. L., Bowman-James, K., Day, V. W., Sung-Ok, K. A Case for Molecular Recognition in Nuclear Separations: Sulfate Separation from Nuclear Wastes. Inorg. Chem. 52, 3473-3490 (2013).
  4. Kim, S. K., Lee, J., Williams, N. J., Lynch, V. M., Hay, B. P., Moyer, B. A., Sessler, J. L. Bipyrrole-Strapped Calix[4]pyrroles: Strong Anion Receptors That Extract the Sulfate Anion. J. Am. Chem. Soc. 136, 15079-15085 (2014).
  5. Jia, C., Wu, B., Li, S., Huang, X., Zhao, Q., Li, Q., Yang, X. Highly Efficient Extraction of Sulfate Ions with a Tripodal Hexaurea Receptor. Angew. Chem. Int. Ed. 50, 486-490 (2011).
  6. Rajbanshi, A., Moyer, B. A., Custelcean, R. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules. Cryst. Growth Des. 11, 2702-2706 (2011).
  7. Custelcean, R. Urea-Functionalized Crystalline Capsules for Recognition and Separation of Tetrahedral Oxoanions. Chem. Commun. 49, 2173-2182 (2013).
  8. Custelcean, R., Sloop, F. V., Rajbanshi, A., Wan, S., Moyer, B. A. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization. Cryst. Growth Des. 15, 517-522 (2015).
  9. Custelcean, R., Williams, N. J., Seipp, C. A. Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters. Angew. Chem. Int. Ed. 54, 10525-10529 (2015).
  10. Custelcean, R., Williams, N. J., Seipp, C. A., Ivanov, A. S., Bryantsev, V. S. Aqueous Sulfate Separation by Sequestration of [(SO4)(H2O)4]4- Clusters within Highly Insoluble Imine-Linked Bis-Guanidinium Crystals. Chem. Eur. J. 22, 1997-2003 (2016).
  11. Khownium, K., Wood, S. J., Miller, K. A., Balakrishna, R., Nguyen, T. B., Kimbrell, M. R., Georg, G. I., David, S. A. Novel Endotoxin-Sequestering Compounds with Terephthaldehyde-bis-guanylhydrazone Scaffolds. Bioorg. Med. Chem. Lett. 16, 1305-1308 (2006).
  12. Pecharsky, V. K., Zavalij, P. Y. . Fundamentals of Powder Diffraction and Structural Characterization of Materials. , (2005).
  13. Goldenberg, D. P. . Principles of NMR Spectroscopy: An Illustrated Guide. , (2016).

Play Video

Citar este artículo
Seipp, C. A., Williams, N. J., Custelcean, R. Sulfate Separation by Selective Crystallization with a Bis-iminoguanidinium Ligand. J. Vis. Exp. (115), e54411, doi:10.3791/54411 (2016).

View Video