The method described here allows time-lapse analysis of organ development in zebrafish embryos by using a fluorescence dissecting microscope capable of performing optical sectioning and simple strategies of readjustment to correct focal and planar drift.
In order to understand organogenesis, the spatial and temporal alterations that occur during development of tissues need to be recorded. The method described here allows time-lapse analysis of normal and impaired kidney development in zebrafish embryos by using a fluorescence dissecting microscope equipped for structured illumination and z-stack acquisition. To visualize nephrogenesis, transgenic zebrafish (Tg(wt1b:GFP)) with fluorescently labeled kidney structures were used. Renal defects were triggered by injection of an antisense morpholino oligonucleotide against the Wilms tumor gene wt1a, a factor known to be crucial for kidney development.
The advantage of the experimental setup is the combination of a zoom microscope with simple strategies for re-adjusting movements in x, y or z direction without additional equipment. To circumvent focal drift that is induced by temperature variations and mechanical vibrations, an autofocus strategy was applied instead of utilizing a usually required environmental chamber. In order to re-adjust the positional changes due to a xy-drift, imaging chambers with imprinted relocation grids were employed.
In comparison to more complex setups for time-lapse recording with optical sectioning such as confocal laser scanning or light sheet microscopes, a zoom microscope is easy to handle. Besides, it offers dissecting microscope-specific benefits such as high depth of field and an extended working distance.
The method to study organogenesis presented here can also be used with fluorescence stereo microscopes not capable of optical sectioning. Although limited for high-throughput, this technique offers an alternative to more complex equipment that is normally used for time-lapse recording of developing tissues and organ dynamics.
Following gastrulation, organogenesis is the next stage of an individual's life cycle. It involves the rearrangement, interaction and very often migration of cells to produce tissues and organs. Inaccuracy in the processes underlying the development of organs often leads to diseases that can manifest themselves either immediately or also later in life. Thus, understanding organogenesis has been a major effort in developmental biology and biomedical research. In order to be able to investigate the development of a particular organ, it has to be visible even through the body wall of the embryo. This enables the recording of the spatial and temporal alterations that occur during development. Also in order to analyze the importance of factors involved in organogenesis, it needs to be susceptible to manipulation.
One organism that is exceedingly suitable for the investigation of in vivo organogenesis is zebrafish. Its transparency during embryonic development in combination with the use of fluorescent transgenic lines allows observation of protein localization and expression dynamics, as well as the visualization of the inner organs 1. This provides a unique advantage concerning the investigation of organ development in real time compared to mammalian models whose organs are inaccessible for microscopic analysis. Moreover, different tools are available to manipulate embryonic development of zebrafish. Beside the generation of mutant lines, antisense morpholino oligonucleotides (MO) can be used to knockdown the activity of particular genes that are involved in the development of certain organs. MOs either target a splice site or the translational start codon (AUG), and thereby interfere with splicing of pre-mRNA or translation.
The zebrafish embryonic kidney, the pronephros, is an anatomically simple but valuable model to study kidney development and the function of genes related to kidney diseases 2. It consists of only two functional units called nephrons. Each nephron consists of a glomerulus where blood filtration takes place 3. Further components are the short neck region as well as the segmented tubule for secretion and reabsorption of solutes and the duct, which ends in the cloaca 4. Regardless of its simple composition, the organization and the different cell types of the zebrafish pronephros are very similar to the mammalian kidney 5,6.
One factor, which is critically involved in kidney development, is encoded by the Wilms Tumor suppressor gene Wt17. Zebrafish possess two paralogs called wt1a and wt1b being expressed in an overlapping but not identical pattern during development of the pronephros 8. By using transgenic zebrafish with GFP-labeled pronephros structures, it has been shown that complete knock-down of wt1a or of a particular splice form leads to severe or mild malformations of the embryonic kidney, respectively 9,10.
The method described here allows time-lapse analysis of normal and impaired nephrogenesis in zebrafish embryos by employing a fluorescence dissecting microscope equipped for optical sectioning via structured illumination. Optical sections in general allow the acquisition of images which only contain in-focus information. Out-of-focus information can be avoided by various approaches such as mathematical algorithms (e.g. deconvolution), optical design (e.g. confocal laser scanning microscopy) or a combination of both (e.g. structured illumination).
To induce defects in kidney development we used an antisense MO against wt1a that was injected into a transgenic zebrafish line (Tg(wt1b:GFP)). This line shows GFP-fluorescence in the glomerulus, neck and the anterior part of the tubule 9,10. In comparison to more complex setups for time-lapse recordings with optical sectioning such as laser scanning or light sheet microscopes, a zoom microscope is easy to handle and less expensive. Moreover, equipment for structured illumination can easily be combined with conventional fluorescence equipment (e.g. fluorescence lamp, filters) and offers dissecting microscope-specific advantages such as an extended working distance and large field of view. Problems with drift were solved without using additional equipment (environmental chamber, anti-vibration table) usually required for stable results. To correct for focal drift an autofocus strategy was established and imaging chambers with imprinted relocation grids were utilized to re-adjust the positioning following a drift in x or y direction.
The presented method can also be applied to microscopes without optical sectioning options, such as fluorescence stereo microscopes and offers an alternative to more complex equipment that is normally used for time-lapse recording of developing tissues and organ dynamics.
All animal experiments were performed according to the 'Principles of laboratory animal care' as well as to the current version of the German Law on the Protection of Animals.
1. Preparation of Antisense-Morpholino (MO)
2. Setting Up Mating Pairs and Collection of Fertilized Eggs
3. Preparatory Work for Microinjection
NOTE: Perform steps 3.1 and 3.2 in advance.
4. Microinjection Procedure
5. Preparation of Embryos for In Vivo Imaging
6. Microscopy
NOTE: Use a microscope equipped for optical sectioning via structured illumination. Record images with a software containing the following modules: Multichannel, Z-Stack, Time Series, Software Autofocus and Extended Focus.
7. Image Processing
Time-lapse microscopy is a powerful technique to watch dynamic biological processes over a longer period of time. An often occurring problem during time-lapse imaging is a movement in x, y or z direction, called drift, which is induced by temperature variations and mechanical vibrations. The method presented here enables time-lapse recording of fluorescently labeled structures in zebrafish embryos or larvae on a dissecting microscope without environmental chamber and anti-vibration table.
For compensation of xy-drift, the specimen was embedded in an imaging chamber with an imprinted relocation grid (Figure 1). The location of a particular point of the grid related to the crosshairs of the software tool was used to return the specimen to the pre-adjusted position (Figure 2A). The presented results were obtained by using a zoom microscope with an integrated slider for optical sectioning via structured illumination (Figure 2B). For continuous focal correction, an autofocus strategy was established. In this strategy, the software autofocus is used to find the focus based on maximum contrast before every time point. This so defined focal plane is subsequently set as center plan for z-stack acquisition. In order to minimize phototoxicity in the sample, the transmitted light brightfield channel is used as reference channel as it allows sufficiently short exposure times during the autofocus step (Figure 2C).
The method was applied for comparative analysis of kidney development in control- and wt1a morphant embryos of a transgenic zebrafish line (Tg(wt1b:GFP)). During early nephrogenesis this line shows green fluorescence in the intermediate mesoderm, were the kidney progenitors arise from 9,10 and later in the forming tubules and nephron primordia (Figure 3).
Time-lapse image recording reveals that nephrogenesis in control morpholino injected embryos is unaltered in comparison to uninjected ones (results not shown) and follows the described steps of early zebrafish kidney development 3. At 20 hpf the developing pronephric tubules are visible and at their anterior tips, spherical accumulations of cells, representing the forming nephron primordia can be detected. During the next hours, tubules and nephron primordia grow and later on the primordia start to fuse at the midline (Figure 4, video 2). In contrast, nephrogenesis is severely disrupted in wt1a morphant embryos. Although GFP-positive tubular structures are visible at 20 hpf, they appear to be more diffuse and less developed. Furthermore, no proper nephron primordia have been formed. The most striking difference to the control embryos at this time point, however, is the appearance of a large number of fluorescent cells outside the developing pronephros (Figure 4, video 2). Subsequently, these cells leave the pronephric field and migrate ventrally (video 2).
Kidney development in control embryos and wt1a morphants of the wt1b transgenic line have been previously compared by taking images at different fixed time points 9,10. In contrast to this static method, time-lapse recording allows to follow dynamics of normal nephrogenesis and misrouting of kidney progenitor cells caused by wt1a depletion.
Figure 1: Schematic Illustration of an Embedded Embryo in a Commercially Available Chamber with Relocation Grids. The dish has four grids, each subdivided into a repeat distance of 50 µm, imprinted into a glass coverslip bottom. The embryo to be imaged is embedded upside down, with kidney structure in close proximity to an observation square but without overlaying with the grid. Please click here to view a larger version of this figure.
Figure 2: Adjustments for Compensation of Drift in Time-lapse Imaging and Grid Projection of Structured Illumination. A distinct position of the relocation grid was brought into the image center (marked by yellow crosshairs) and serves as a reference point for later xy-alignment in case of small shifts. The red rectangle represents the region of interest (ROI) used in the autofocus strategy (A). Optical sectioning was obtained by structured illumination. The image shows a grid structure projected in the focal plane after correct calibration (B). The ROI for the autofocus strategy (red rectangle) is set to cover distinctive embryonic structures high in contrast (here somites) that allow reliable autofocusing into the structure of interest (C). Please click here to view a larger version of this figure.
Figure 3: Transgenic wt1b:GFP Embryos with Green Fluorescence in the Developing Kidney. Overlays of dorsal (A) or lateral (B) transmission and fluorescence images are shown with anterior to the left. np, nephron primordium; pt, pronephric tubule; so, somite. Please click here to view a larger version of this figure.
Figure 4: Knockdown of wt1a Disrupts Embryonic Kidney Development. Representative, extended depth of focus images from time-lapse recordings. In control morpholino injected embryos, kidney development shows normal progress with growing tubules and nephron primordia which start to fuse at the midline. In contrast, wt1a morphants fail to form proper nephron primordia and a massive amount of GFP positive cells are outside of the pronephric field. (np, nephron primordium; pt, pronephric tubule). Please click here to view a larger version of this figure.
Supplemental Video 1. Time-lapse recording of normal kidney development in control morpholino injected embryos. (Right click to download). The video shows how tubules grow and nephron primordia begin to fuse. Starting at 20 hpf, images were taken in 30 min intervals over a period of 5 hr.
Supplemental Video 2. Time-lapse recording of disturbed nephrogenesis in wt1a morphant embryos. (Right click to download). The video shows the migration of GFP-positive cells out of the pronephric region. Starting at 20 hpf, images were taken in 30 min intervals over a period of 5 hr.
The zebrafish has become a popular model organism for studies of vertebrate development and modelling of human diseases. Because zebrafish embryos remain transparent, developing organs like brain and heart can be observed using a standard preparation microscope. Taking advantage of transgenic lines with organ specific fluorescence enables assessments of organogenesis throughout different stages of development within living embryos by fluorescence microscopy. One limitation for imaging structural details of whole organs with standard epifluorescence microscopy is the impact of signals from objects above and below the focal plane. This out-of-focus light not only results in decreased image contrast and resolution, it also may obscure important structures of interest 13,14. Several techniques such as laser scanning confocal-, spinning disk confocal- or multiphoton microscopy have been developed to minimize the out-of-focus information and thereby increase image contrast as well as axial resolution. An alternative method to obtain optical sections is the laser- and scanning free structured illumination microscopy, a wide field based illumination technique which is and simple to implement on a regular microscope 15. The results presented here illustrate that optical sectioning, achieved by structured illumination, implemented on a dissecting microscope and combined with reconstruction of extended focus images, enables visualization of structural details of normal and disturbed kidney development in zebrafish. In particular, the GFP-positive cells in wt1a morphants are dispersed at various focal depths, and images of only one plane with out-of- focus blur would underestimate the three dimensional complexity of the phenotype.
To follow the dynamics of organ organization, rearrangement or disruption, time-lapse fluorescence microscopy is a powerful albeit complex technique. During time-lapse imaging slight vibrations or minor temperature fluctuations cause drifts in x, y or z direction. This demands additional equipment (environmental chamber, anti-vibration table) in order to obtain stable results. The presented method uses the capability of a dissecting microscope with a motorized focus drive for recording time-lapse images without extra devices. To maintain a stable focus, an autofocus strategy was established and a relocation grid imprinted into the bottom of the imaging chamber was used for correction of x,y- instability.
Proper embedding of the embryo is a critical step within the protocol. Some practice is needed to place the structure of interest as close as possible to the glass bottom and in close vicinity to the grid without overlaying with it.
The main advantage of the method is that it is an affordable and simple tool for direct observation of developmental processes such as growth and migration in living embryos over several hours. Moreover, the dissection microscope-specific benefits such as large field of view and extended working distance facilitate examination of larger samples including whole organs. However, some limitations have to be kept in mind. Pausing of the experiment to check and readjust the positioning makes the procedure time-consuming and the absence of a robust temperature control changes the "standard" developmental time, which is defined as hr post fertilization at 28.5 °C for zebrafish 16. Another potential problem is the restricted depth of imaging into the animal, particularly when the structure of interest is located inside the embryo or larvae. Such a structure is the zebrafish pronephric glomerulus, which is situated between the somites and the yolk sac. The limiting depth for imaging the glomerulus was found to be about 200 µm, a distance that is reached after 5 days of development. In contrast, fluorescent structures that are located closer to the surface of the animal can be imaged for a longer time. For example liver cells are accessible for imaging at least until 9 dpf. A further limitation is that long term immobilization of the embryo or larvae in agarose and Tricaine treatment induce growth retardation and cardiac edema, respectively. Because this may interfere with normal development, it is recommended to restrict the duration of time-lapse recording to a certain period of interest. To ensure that during imaging structures of interest develop normally it is helpful to compare (at the end) the overall appearance with that of an animal kept under same experimental conditions but without embedding and anesthetization.
Recording a z-stack of optical sections every 30 minutes over a period of 5 hr and subsequent calculation of extended depth of focus images provided spatial and temporal information about early events of normal and disturbed kidney development which was induced by morpholino-mediated knockdown of wt1a. Previously performed morpholino knockdown experiments have already shown that Wt1a fulfills an early and essential role in pronephros formation. In situ hybridization with kidney marker 17,18 and employment of the transgenic wt1b:GFP line for imaging pronephros development at fixed time points 9,10 revealed that wt1a deficiency results in disrupted glomerular morphogenesis and failed podocyte specification. In contrast to these static approaches, time-lapse recordings directly visualize dynamics of early nephrogenesis in control embryos and the migration of GFP-positive cells away from the pronephric region in wt1a morphants. The possibility to track misrouted cells over time allows a more detailed phenotype analysis.
In general, the method that is presented here provides an inexpensive and easy to use alternative to the complex, and less accessible setups normally used for time-lapse imaging such as laser scanning microscope (equipped with an environmental chamber and anti-vibration table) or light sheet microscope. The described routine to fix drift problems can also be applied to perform time-lapse images on setups without optical sectioning options, such as fluorescence stereo microscopes.
The technique is not only suitable to investigate kidney development but can be also applied to monitor normal and defective morphogenesis of other organs such as heart or liver. Furthermore, the method can be used to observe various more dynamic processes in embryonic and adult model organisms such as wound healing or regeneration.
The authors have nothing to disclose.
We thank Thomas Bates for critically reading and improving the manuscript. We also thank Christina Ebert and Sabrina Stötzer for fish maintenance.
Material | |||
Control Morpholino | Gene tools, LLC | Standard control oligo | Prepared control oligo |
wt1a Morpholinos | Gene tools, LLC | customized | Designted to target the first splice donor site, sequence as published in Ref. Nr. 9 |
0,5% Phenol red solution | Sigma | P0290 | Injection tracer |
peqGOLD universal agarose | peqlab | 35-1020 | To prepare microinjection dish |
Glass capillaries (GC100F-10) | Hugo Sachs Elektronik | 30-0019 | To generate injection needles |
Microloader tips | Eppendorf | 5242956003 | To load the microinjection needle |
Dumont forceps | Fine Sience Tools | 91150-20 | To generate an opening at the needle tip |
Embryo water (0.3x Danieaus´ solution) | 1x: 58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6 Ca(NO3)2, 5 mM HEPES, pH: 7,5; Do not add methylene blue! | ||
Graticule 5mm / 0.05mm | Science Services | PY68039-02 | For calculation of injection amount |
Pasteur pipette 137 mm, 4.8 ml | Roth | E305.1 | To collect eggs, to transfer embryos and to remove dead embryos |
Pasteur pipette with ultra-thin tip 157 mm, 3.5 ml | Roth | E304.1 | To remove excess of water |
N-Phenylthiourea (PTU) | Sigma | P7629 | For suppression of melanization |
Ethyl 3-aminobenzoate methanesulfonate (Tricaine) | Sigma | E10521 | To anethesize zebrafish |
Low melting agarose | Biozym | 850111 | For embedding |
µ-dish 35 mm, high Glass Bottom Grid-50 | ibidi | 81148 | Imaging chamber |
Gel loader tips | Hartenstein | GS05 | To orient the embryo for proper embedding |
Equipment | |||
Micropipette puller (model P-97) | Sutter Instrument | To generate injection needles | |
Micromanipulator | Saur Laborbedarf | For microinjection | |
Thermomixer copact | Eppendorf | Thermoblock for tempering the low melting agarose | |
SZ61 (Stereomicroscope) | Olympus | For injection control | |
Axio Zoom. V16 | Zeiss | For embedding and imaging | |
ApoTome.2 slider | Zeiss | For optical sectioning | |
AxioCam MRm | Zeiss | For image acquisition | |
ZEN 2012 | Zeiss | Imaging software |