Summary

Hemogenic内皮细胞直接诱导和血液中转录因子在人多能干细胞表达

Published: December 03, 2015
doi:

Summary

This protocol describes the efficient induction of hemogenic endothelium and multipotential hematopoietic progenitors from human pluripotent stem cells via the forced expression of transcription factors.

Abstract

在开发过程中,造血干细胞源自血管内皮细胞的一个专门的子集,hemogenic内皮细胞(HE)。建模何发展体外为内皮造血过渡和造血规范机理研究必不可少的。在这里,我们描述了用于有效诱导贺从人多能干细胞(hPSCs)由不同组的转录因子表达的方式的方法。 ETV2和GATA1或GATA2转录因子的组合被用于诱导他以泛粒细胞潜力,而GATA2和TAL1转录因子的结合允许生产的贺红系和巨核细胞潜力。加入LMO2到GATA2和TAL1组合显着加快分化,增加红系和巨核细胞的生产。这种方法提供何感应的有效且迅速的方式从hPSCs并且允许进行观测的内皮hematopoieti的在文化菜C的过渡。该协议包括hPSCs转导程序和HE的转导后分析和血液祖细胞。

Introduction

人多能干细胞(hPSCs)的自我更新和分化为三个胚层,包括血细胞,使它们的有价值的工具为造血发育的机理研究,血液病的模型,药物筛选的独特能力,毒性研究,以及细胞疗法的发展。因为通过内皮的造血转变1,2血液形成从hemogenic内皮细胞(HE)的胚胎进行,HE的文化的产生是必须研究调节内皮细胞造血转变和造血规格的分子机制。目前的方法进行HE的研究是基于感应hPSCs与造血-支持基质细胞6,7或在二维培养与细胞外的hematoendothelial分化的聚集体(EBS)通过加入造血细胞因子3-5,和共培养矩阵和cytokines 8,9。这些经典的差异化方法的基础上推出的作用于细胞表面和启动的分子途径,最终导致转录程序指导hematoendothelial发展激活级联外部信号。因此,hPSCs分化在这些系统的效率依赖于有效的感应这些信号,信号转导到细胞核,将得到的特定转录调节子活化。此外,他在常规分化培养物中研究需要使用细胞分选分离HE细胞的附加步骤。在这里,我们描述了一个简单的协议,直接诱导HE和血液的造血转录因子的表达。这个方法允许有效地诱导贺在培养皿中并直接观察内皮造血过渡而不使用笨重细胞分选过程的必要性,HE的隔离。

何的形成和血液从人多能干细胞可以通过超表达只是几个转录因子(TF)被有效地诱导。能够从hPSCs诱导强大的泛骨髓造血转录因子的优化组合包括ETV2和GATA1或GATA2。与此相反,GATA2和TAL1的组合诱导erythromegakaryocytopoiesis 10。通过对这些因素的过度编程hPSCs分化hPSCs直接对VE-CAD + CD43 CD73 HE细胞逐渐获得 ​​由早期造血标志物CD43 7表达定义的造血型。这种慢病毒为基础的方法的人多能干细胞的方法的直接编程适用于生成HE和血细胞的机理研究,内皮造血过渡研究,和造血发育和说明书的转录调控。虽然C使用,类似的结果可以用改性的mRNA 10来获得转基因的组成型表达urrent协议描述血液生产。

Protocol

1.病毒制剂和转录因子组合制备用含有编码蛋 ​​白质的DNA的供ETV2,GATA1,GATA2,TAL1和LMO2(表1)PSIN-EF1α启动慢病毒表达质粒的解决方案。 测量通过记录紫外吸收用分光光度计在230nm,260nm处,和280nm用于慢病毒生产的质粒制备物的浓度和纯度。注:DNA制备展示A260 / 280和A260 / 230的值大于1.8通常被认为是良好的品质。低级A260 / 280值可以指示蛋白污染,而较低的A260 / …

Representative Results

HE和从hPSCs通过转录因子过度表达血诱导的示意图示于图1。ETV2与GATA1或GATA2组合诱导泛骨髓造血,而一个GATA2,TAL1 +/- LMO2组合诱导主要赤型巨核造血。这两个TF组合直接诱发HE细胞随后转变为血液祖细胞与造血细胞分化的一个独特的光谱。从多能状态血液hPSCs分化产生,他对平均4天。圆形血细胞首次出现由分化第5天。随后,无数的漂浮的血细胞出现,并扩大在文化。为了?…

Discussion

对于hPSCs通过转录因子的过表达造血分化的上述方法,表示了快速和有效的方法为HE和髓系和erytho-magakaryocytic祖细胞的产生由hESCs和iPS细胞,由此允许生产多达30百万血细胞从百万多能干细胞10。这种方法在多个人类胚胎干细胞和iPS细胞系10表现出一致的差异。在分化ETV2和GATA2,GATA1因素以及GATA2和TAL1因素,细胞形成的血液产生内皮细胞,他和经历的内皮细胞造血转变。何的形成天3和…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

We thank Matt Raymond for editorial assistance. This work was supported by funds from the National Institute of Health (U01HL099773, R01HL116221, and P51 RR000167) and The Charlotte Geyer Foundation.

Materials

Table 1. Induction of hPSCs differentiation with trancription factors and analysis of hemogenic endothelium and blood cells.

pSIN4-EF1a-ETV2-IRES-Puro  Addgene Plasmid #61061 Lentiviral Vector
pSIN4-EF1a-GATA2-IRES-Puro  Addgene Plasmid #61063 Lentiviral Vector
pSIN4-EF1a-GATA1-IRES-Puro  Addgene Plasmid #61062 Lentiviral Vector
pSIN4-EF1a-TAL1-IRES-Puro  Addgene Plasmid #61062 Lentiviral Vector
pSIN4-EF1a-LMO2-IRES-Puro  Addgene Plasmid #61064 Lentiviral Vector
Hexadimethrine bromide (Polybrene)  Sigma-Aldrich 107689-10G Cationic polymer used to increase the efficiency of infection
Y-27632 (Dihydrochloride) ROCK inhibitor STEMCELL Technologies 72302 RHO/ROCK pathway inhibitor Inhibits ROCK
StemPro Accutase Cell Dissociation Reagent Life Technologies A11105-01 Cell Dissociation Reagent
Incomplete (growth factor- free) culture medium                                              mTeSR1 Custom formulation  WiCell Research Institute (Madison, WI) MCF Serum-free mTeSR1 medium without bFGF and TGFb 
human SCF Peprotech 300-07 Premium grade
human TPO Peprotech 300-18 Research grade
human FGF-basic Peprotech 100-18B Premium grade
CD144 (VE-cad) FITC BD Biosciences 560411 Endothelial marker (FACS)
CD226 PE BD Biosciences 338305 Hematopoietic (FACS)
CD43 PE BD Biosciences 560199 Hematopoietic (FACS)
CD73 APC R&D Systems FAB5795A Endothelial marker (FACS)
CD45 APC BD Biosciences 555485 Hematopoietic (FACS)
7AAD Life Technologies A1310 Live/Dead assay (FACS)
Paraformaldehyde  Sigma-Aldrich P6148-500G Cell fixation 
Triton X-100  Sigma-Aldrich T9284-500ML  Permeabilization 
FBS Fisher Scientific SH3007003 Fetal bovine serum
Mouse anti-human CD43 BD Biosciences 551457 Pure, primary antibody for Immunofluorescence (IF) staining
Rabbit anti-human VE-cadherin BenderMedSystem BMS158 Primary (IF)
Anti-rabbit Alexa Fluor 488-conjugated JacksonResearch 715-486-152 Secondary (IF)
Anti-mouse Alexa Fluor 594-conjugated JacksonResearch 715-516-150  Secondary (IF)
DAPI nucleic acid stain Life Technologies D1306  Live/Dead assay (IF)
Clonogenic medium MethoCult H4435 Enriched STEMCELL Technologies 4435 CFC-assay
Wright Stain solution Sigma -Aldrich 32857 Staining cytospins

Table 2. hPSCs culture.

Human Pluripotent Stem Cells (hPSCs)  WiCell Research Institute (Madison, WI) hESCs (WA01, WA09) human Embryonic Stem cells; iPSCs (DF-19-9-7T, DF-4-3-7T) transgene-free induced Pluripotent Stem Cells hPSCs are able to self-renew and to differentiate into cells of three germ layers
Complete serum-free medium for culture of hPSCs                                                    mTeSR1 media   WiCell Research Institute (Madison, WI) M500  Serum-free  medium with growth factors for feeder free culture of ESC/iPSCs
Matrigel BD Biosciences/ Corning  356234 Matrix for maintenance of human ESC/iPSCs
DMEM/F-12, powder  Life Technologies 12500-062 Basal Medium 
HyClone Dulbecco's PBS powder Fisher Scientific dSH30013.04 PBS
Dispase II, powder Life Technologies 17105-041 Neutral protease, Cell dissociation

Table 3. Primers for detection of virus genomic integration.

Primer's Name Forward (Fwd)  5’ –>3’ Reverse (Rev) 5’–>3’ Discription 
pSIN EF1a Fwd TTC CAT TTC AGG TGT CGT GA EF1a promoter sequence
GATA1 Rev TCC CTG TAG TAG GCC AGT GC  Coding Region 
GATA2 Rev GGT TGG CAT AGT AGG GGT TG  Coding Region 
TAL1 Rev AGG CGG AGG ATC TCA TTC TT  Coding Region 
LMO2 Rev GGC CCA GTT TGT AGT AGA GGC  Coding Region 
ETV2 Rev GAA CTT CTG GGT GCA GTA AC   Coding Region 

Referencias

  1. Zape, J. P., Zovein, A. C. Hemogenic endothelium: origins, regulation, and implications for vascular biology. Semin Cell Dev Biol. 22, 1036-1047 (2011).
  2. Swiers, G., Rode, C., Azzoni, E., de Bruijn, M. F. A short history of hemogenic endothelium. Blood Cells, Mol & Dis. 51, 206-212 (2013).
  3. Kennedy, M., et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2, 1722-1735 (2012).
  4. Wang, L., et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity. 21, 31-41 (2004).
  5. Rafii, S., et al. Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood. 121 (5), 770-780 (2012).
  6. Choi, K. D., et al. Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep. 2, 553-567 (2012).
  7. Vodyanik, M. A., Thomson, J. A., Slukvin, I. I. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood. 108, 2095-2105 (2006).
  8. Wang, C., et al. TGFbeta inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy. Cell Res. 22, 194-207 (2012).
  9. Uenishi, G., et al. Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Rep. 3, 1073-1084 (2014).
  10. Elcheva, I., et al. Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nat Commun. 5, 4372 (2014).
  11. Tiscornia, G., Singer, O., Verma, I. M. Production and purification of lentiviral vectors. Nat Protoc. 1, 241-245 (2006).
  12. Vodyanik, M. A., Slukvin, I. I. Hematoendothelial differentiation of human embryonic stem cells. Curr Protoc Cell Biol. Chapter 23, Unit 23.6 (2007).
  13. Cao, F., et al. Comparison of gene-transfer efficiency in human embryonic stem cells. Mol Imgn and Biol. 12, 15-24 (2010).

Play Video

Citar este artículo
Elcheva, I., Brok-Volchanskaya, V., Slukvin, I. Direct Induction of Hemogenic Endothelium and Blood by Overexpression of Transcription Factors in Human Pluripotent Stem Cells. J. Vis. Exp. (106), e52910, doi:10.3791/52910 (2015).

View Video