Here, we present a protocol for direct stereotaxic brain infusion of amyloid-beta. This methodology provides an alternative in vivo mouse model to address the short-term effects of amyloid-beta on brain neurons.
Alzheimer’s disease is a neurodegenerative disease affecting the aging population. A key neuropathological feature of the disease is the over-production of amyloid-beta and the deposition of amyloid-beta plaques in brain regions of the afflicted individuals. Throughout the years scientists have generated numerous Alzheimer’s disease mouse models that attempt to replicate the amyloid-beta pathology. Unfortunately, the mouse models only selectively mimic the disease features. Neuronal death, a prominent effect in the brains of Alzheimer’s disease patients, is noticeably lacking in these mice. Hence, we and others have employed a method of directly infusing soluble oligomeric species of amyloid-beta – forms of amyloid-beta that have been proven to be most toxic to neurons – stereotaxically into the brain. In this report we utilize male C57BL/6J mice to document this surgical technique of increasing amyloid-beta levels in a select brain region. The infusion target is the dentate gyrus of the hippocampus because this brain structure, along with the basal forebrain that is connected by the cholinergic circuit, represents one of the areas of degeneration in the disease. The results of elevating amyloid-beta in the dentate gyrus via stereotaxic infusion reveal increases in neuron loss in the dentate gyrus within 1 week, while there is a concomitant increase in cell death and cholinergic neuron loss in the vertical limb of the diagonal band of Broca of the basal forebrain. These effects are observed up to 2 weeks. Our data suggests that the current amyloid-beta infusion model provides an alternative mouse model to address region specific neuron death in a short-term basis. The advantage of this model is that amyloid-beta can be elevated in a spatial and temporal manner.
Amyloid plaque deposits, which are composed of amyloid-beta (Aβ1-42), are a key feature of the pathology of Alzheimer’s disease (AD). Numerous studies have shown that high or toxic levels of recombinant oligomeric Aβ1-42 elicit neuronal death, synaptic dystrophy, loss and dysfunction; as well as learning and memory deficits1-4. Brain regions affected include the hippocampus, the cortex, and subcortical structures such as the basal forebrain and the amygdala5,6. To date, there are multiple transgenic mouse models that attempt to simulate the Aβ1-42 pathology of AD. Depending on the strain these animals prove to be useful in examining select pathological features of AD. Unfortunately, with the exception of 2 transgenic lines, APP23 and 5XFAD, these mice never fully replicate neuronal loss, a key aspect of AD. Even with the neuronal loss observed in APP23 and 5XFAD, the neuronal death observed was subtle, age dependent, and isolated to a few select regions7,8.
The direct infusion of oligomeric Aβ1-42 into the wild-type mouse brain provides an excellent in vivo model which replicates the neuronal death aspect of amyloidopathy1,9,10. Unlike the commonly utilized transgenic mouse models the oligomeric Aβ1-42 infusion model is ideal for acutely elevating Aβ1-42 levels in a spatial and temporal manner. The advantage of using wild-type mice for this model obviates potential compensation or side effects from the mutations introduced in transgenic mouse lines. Past studies have shown that infusing toxic levels of Aβ1-42 into the hippocampus elicits neuron death in the vicinity of the injection site within 1 week1. Moreover, consistent with the observation that Aβ1-42 is toxic for cholinergic neurons11 the basal forebrain cholinergic neuron (BFCN) population which projects to the hippocampus is decreased 20-50% within 7-14 days following beta-amyloid infusion1,10 in mice, effectively allowing for the examinations of isolated neuronal circuitry in the brain. Since BFCN project ipsilaterally to the dentate gyrus of the hippocampus12, for the most part control/vehicle and oligomeric Aβ1-42 solutions can be injected on either side of the brain allowing comparisons to be made between the left and right hemispheres1.
In this report we will provide a detailed surgical and injection methodology for adult wild-type C57BL/6J mice. This mouse strain is chosen because of its wide use in research. Technically, any brain region can be targeted for infusion, however here we will use the dentate gyrus of the hippocampus as the target to illustrate the technique.
Note: For all animal experimentation, Institutional and National guidelines for the care and use of laboratory animals were followed.
1. Prepare Surgical Instruments and Solutions for Surgery
2. Prepare Oligomeric Aβ1-42
3. Determine Injection Coordinates
4. Stereotaxic Frame Setup
5. Animal Preparation
6. Surgery and Infusion
7. Animal Removal and Postoperative Care
8. Suture Removal
9. Animal Sacrifice and Tissue Processing
The present method of preparing human recombinant oligomeric Aβ1-42 yields soluble oligomeric species consisting of monomers, dimers, trimers, and tetramers (Figure 1A). These low molecular weight Aβ1-42 species, but not the fibrils and plaques, have been shown in numerous settings to be most toxic to neurons1,4,9,17-19. To determine whether or not oligomeric Aβ1-42 induces neuron death in the mouse brain Aβ1-42 (4 µl of 100 µM stock solution) was infused into the DG of the hippocampus in one hemisphere of 9 month old wild-type C57BL/6J mice. The weight of a hippocampus for C57BL/6J is estimated to be around 0.018 g and therefore the delivery of Aβ1-42 was approximately 100 μg/g. The contralateral DG of the same mouse brain was infused with a control/vehicle solution – which consisted of equal volume of DMSO used in dissolving Aβ1-42 diluted in (1x) PBS – for comparison. As mentioned previously scrambled or reverse Aβ1-42 peptide may be used as control for comparison since we previously found no effect on hippocampal neurons1. As the introduction of the needle into the brain creates local tissue damage (Figure 1B) and causes eventual DG collapse we opted to perform post-injection analyses adjacent to the injection tract where the tissue is still intact. Within 1 week of Aβ1-42 injection the DG exhibited elevated Aβ1-42 levels in the molecular layer and the polymorphic cell layer in the vicinity of the injection site (Figure 2A). At 7 and 14 days Aβ1-42 elicited increases in TUNEL-positive staining and decreases in DG thickness, confirming the neurodegenerative effects of Aβ1-42 (Figure 2B).
Because BF cholinergic neurons project to the DG of the hippocampus we determined next if the neuron loss in the DG triggers BF degeneration. For this study a retrograde tracer fluorogold (2% suspension) was co-injected along with Aβ1-42 into the DG. 7 days following injection fluorogold was detected in the BF (Figure 2C) suggesting retrograde transport of the label via cholinergic neurons. Therefore, for the purpose of quantification in the BF we chose fluorogold-positive neurons because this indicates that the neuronal terminals were exposed to Aβ1-42 in the DG. At both 1 and 2 weeks following DG Aβ1-42 infusion, the nucleus of the diagonal band – a subregion of the BF where the cholinergic neurons project to the DG – ipsilateral to the Aβ1-42-injected site exhibited increases in TUNEL staining and decreases in cholinergic neurons (Figure 2D). The observed neuron loss in the BF confirms past studies linking the destructive effects of Aβ1-42 to the BF-hippocampal pathway1,10. It is also crucial to note that from the comparison of the 2 week time point to 1 week time point on the side of the nucleus of the diagonal band where the control/vehicle solution was injected in the DG there were further increases in TUNEL staining and decreases in cholinergic neurons (Figure 2D, table). These results reflect significant decreases in the GCL thickness and increases in TUNEL-positive labeling (Figure 2B, table) in the DG of the vehicle injected side comparing between the 2 post injection time points, implying that the physical trauma caused by the needle contributes to degeneration over time. Even with this undesirable side effect of the needle, the neurodegenerative effects of Aβ1-42 are still significantly greater than those of the control/vehicle solution (Figure 2D). Taken together, the current infusion model effectively reproduces the toxic effects of Aβ1-42 in the mouse brain within 7 days making this an attractive model to study short-term Aβ1-42 stimulation.
Figure 1. Oligomeric Aβ1-42 preparation and mouse brain injection tract visualization. (A) 2 µM Oligomeric Aβ1-42 was separated on 10-20% tricine gel and transferred onto nitrocellulose membrane. The membrane was blotted with Aβ1-42 antibody 6E10 (1:1,000). (B) Aβ1-42 (4 µl of 100 µM solution) or control/vehicle was infused into the left and right DGs of the hippocampus, respectively, of 9 month old C57BL/6J mice. Mice were survived for 7 days. Brains were serially sectioned at 20 µm per section. Hippocampal sections were stained for DAPI. Hash marks depict the injection tract. Arrows show collapsed DG. The scale bar represents 200 µm. Please click here to view a larger version of this figure.
Figure 2. Oligomeric Aβ1-42 induces neuron death in the DG and the BF. Control/vehicle or AΒ1-42 (4 µl of 100 µM solution) was infused into the left and right DGs of the hippocampus, respectively, of 9 month old C57BL/6J mice. Mice were survived for either 7 or 14 days. Brains were serially sectioned at 20 µm per section. (A) 7 days post injection hippocampal sections stained for Aβ1-42 (NU4 antibody, 1:2,000). ML, molecular layer; GCL, ganglion cell layer; PCL, polymorphic cell layer. The scale bar represents 50 µm. (B) 7 or 14 days post injection hippocampal sections stained for DAPI or TUNEL. * p <0.05 compared to 1 week. *** p <0.001 compared to 1 week. * p <0.05 compared to vehicle. ** p <0.01 compared to vehicle. The scale bar represents 50 µm. (n = 5 mice) (C) Vehicle or Aβ1-42 co-injected with fluorogold (2% solution). Fluorogold labeling determined in the BF 7 days post-injection. Slides containing the BF were randomly chosen. Fluorogold labeling was used to determine the region of interest. Once the region of interest was identified adjacent brain slices were used to stain for markers of interest. The insets are regions in which images in (D) are chosen. The scale bar represents 200 µm. (D) 7 or 14 days post injection BF sections stained for ChAT (1:100, goat polyclonal) or TUNEL. *** p <0.001 compared to 1 week. * p <0.05 compared to vehicle. Quantification was done on the entire region of interest. The boundary between the medial septum and the diagonal band is delineated based on the location of the anterior commissure. The scale bar represents 100 µm. (n = 5 mice). Please click here to view a larger version of this figure.
To achieve a successful Aβ1-42 injection the experimenter or surgeon must: 1) use aseptic technique; 2) correctly identify the brain region of interest with accurate coordinates; 3) be able to properly secure the mouse in the stereotaxic frame with the brain leveled in the AP and ML axis; 4) have the ability to operate the micromanipulator with precision; 5) ensure proper post-operative care. If these key steps are followed the mouse should survive the surgery with no observable infection.
In accord with in vitro studies, we and others have shown that Aβ1-42 directly infused into the hippocampus elicits neuron death1,4,9,10, depicting one of the key features of AD. The degeneration is clearly evident in the vicinity of the injection site as shown by a decreased in the volume of the dentate gyrus that is complemented by increases in markers for degeneration1. Furthermore, the cholinergic neurons that project to the hippocampus die in a retrograde fashion as shown by a decrease in cholinergic labeling and an increase in TUNEL-positive staining in the BF1,10. Hence, this in vivo model serves as an excellent model to investigate the semi-acute effects of Aβ1-42 locally. The key advantage of this injection model is its dynamic nature: any brain region may be targeted and different aged animals may be used. 9 month old male mice were chosen in our experiments because we believe increasing Aβ1-42 levels in older mice better simulates the disease which occurs in older people. Moreover, we aim to keep the experiments consistent by using mice of the same age. However, mice of any age could be used for the injection. In the past we have experimented on mice that were 16 months old and others have used mice that were 2 months old9,10. Only male mice should be used in studies as female mice exhibit estrogen level fluctuations and estrogen is known to have neuroprotective effects20. Although many research interests center around the pathological effects of Aβ1-42, there is also evidence that low or physiological Aβ1-42 levels are required for normal functions for learning and memory21,22. In these studies investigators lowered the concentration of Aβ1-42 injected and infused it into the hippocampus22,23, effectively revealing yet another example of the dynamic nature of the utility of this paradigm. Other compounds that have been successfully infused stereotaxically include drugs, viruses, siRNA, antibodies, and peptides1,22-26 to investigate various effects ranging from cell death/survival to animal behavior. Thus, there are numerous applications for employing this infusion paradigm.
The described infusion methodology, while exhibiting various potentials for in vivo studies using this technique, also comes with inherent limitations. First, this model only attempts to reproduce the effects of Aβ1-42 in an isolated brain region. Second, the injection site is damaged from the introduction of a needle into the brain. This contributes to additional cell death and gliosis. Therefore, analysis has to be performed away from the injection tract. With appropriate vehicle control on the contralateral side of the same brain this should not be a problem as the injected vehicle and Aβ1-42 solutions spread to surrounding tissue. Third, because BF cholinergic neurons project to the hippocampus, the physical damage of the hippocampus as evident by the collapse of the DG by the needle (Figure 1B) may inadvertently kill some BFCNs. Fortunately, examining the neuronal circuitry in the short term – within 1 week of a single-shot infusion – does not pose a problem since our data suggests that the increased cholinergic death in the basal forebrain is the result of Aβ1-42 and not from the trauma of the needle; control injections provide the appropriate analysis. The data suggest that the degeneration of the DG is also necessary for the loss of BF cholinergic neurons as these neurons lose their synaptic targets (Figure 2B). Unfortunately, for animals surviving up to 2 weeks the vehicle injected side shows significant elevation of BFCN death over 1 week post-vehicle injected animals that appears to be due in part to the degeneration and thinning of the dentate gyrus resulting from the physical trauma of the needle. However, even at this stage the data suggests there is significantly more death in the BF ipsilateral to the Aβ1-42-injected site. Fourth, identifying subtle anatomic boundaries may be difficult to achieve. For example, the boundary between the medial septum and the diagonal band was determined based on the location of the anterior commissure, a technique that was previously described27. Furthermore, because of the ipsilateral BF cholinergic neuronal projection – mainly from the medial septum and the vertical limb of the diagonal band (MS/DB) – to the dentate gyrus of the hippocampus12,28,29 we decided to inject one hemisphere with Aβ1-42 and use the opposite hemisphere as control for comparison. It is conceivable that a concern for this paradigm would be the proper identification of the boundary separating left and right MS/DB. While the MS is in the midline region, the DBs are more lateral. For this current work and our most recent publication1 we were able to comfortably distinguish left and right DB. Our quantification reveals ChAT(+) neurons decrease by approximately 25% in the DB in the Aβ1-42 -injected side. However, we did not detect any significant changes in the ChAT(+) neurons in the MS1. Because of the lateral location of the DBs and the changes observed we felt we were justified to employ vehicle and Aβ1-42 injections within the same animal. Furthermore, testing 2 different experimental conditions within the same animal not only maximizes the use of the animal but also reduces potential animal-to-animal variability. While our experimental design allows us to compare left and right hemispheres it is conceivable this comparison technique may not be feasible in future studies, i.e., if the medial septum is the main focus of the study. In such case each animal will have to serve as an experimental condition. Hence, the use of animals is at the discretion of the experimenters. Fifth, can the current injection model be used for other read-outs such as behavior? Our purpose in employing the current Aβ1-42 injection model was to assess the neuropathological effects of Aβ1-42 in vivo and compare it to in vitro findings1. To that end, it serves its purpose. AD is a disease that affects the memory and behavior functions of an individual. Thus, it is natural to ask whether the current model may be used for behavior studies. To expand the current model into behavior studies experimenters will have to characterize the model further and may have to adjust the injection strategy. For example, since we observed DG degeneration (Figure 1B and 2B) when we target the injection needle into or near the DG at 7 days the destruction of the DG may give rise to unintended behavioral abnormalities. Hence, if a study requires examining the effect of Aβ1-42 on the hippocampal-dependent behavior, then the injection target may have to be repositioned near the hippocampus rather than directly into it and allow Aβ1-42 to diffuse into the hippocampus. That said, the use of the current injection paradigm for behavior testing is possible but requires more testing and characterization, and the final experimental strategy will be determined by the end user. Interestingly, there have been prior rodent behavior studies that involve external delivery of Aβ1-42 directly into the brain.22,30 Taken together, these limitations need to be considered when designing in vivo mouse studies employing this model.
Since no single mouse model in existence captures the full pathological effects of AD the stereotaxic Aβ1-42 infusion technique provides experimenters with an alternative in vivo Aβ1-42 mouse model. When performed by a well trained individual this model is best suited for short term studies focusing on the effects of Aβ1-42 on a specific brain region or circuitry.
The authors have nothing to disclose.
This work was supported by National Institute of Neurological Disorders and Stroke grant NS081333 (to CMT), Alzheimer’s Association grant NIRG-10-171721 and National Institute of Mental Health grant MH096702 (to UH), and National Institute on Aging-funded Alzheimer’s Disease Research Center at Columbia University pilot grant AG008702 (to YYJ and JB).
Ketamine HCl (100mg/ml) | Henry Schein Medical | 1049007 | 100 mg ketamine per 1 kg animal |
Xylazine (20mg/ml) | Henry Schein Medical | not available | 10 mg xylazine per 1 kg animal |
Buprenex (0.3mg/ml) | Henry Schein Medical | 1217793 | 0.1 mg buprenex per 1 kg animal |
Aβ1-42 | David Teplow/UCLA | not available | 100 μM; This amyloid was used in the paper |
Aβ1-42 | Bachem | H-1368 | Can be used in place of amyloid from the Teplow lab |
Aβ1-42 | American Peptide | 62-0-80B | Can be used in place of amyloid from the Teplow lab |
Scrambled Aβ1-42 | American Peptide | 62-0-46B | Can be used as control peptide for comparing Aβ1-42 |
NU4 Antibody (Oligomeric Amyloid Antibody) | Gift from William Klein/Northwestern U. | not available | 1:2000 dilution |
Anti-Amyloid Oligomeric Antibody (Polyclonal Rabbit) | EMD Millipore | AB9234 | May be used in place of Nu4; needs to be tested by the end user |
6E10 Antibody (Monoclonal Mouse) (Amyloid Antibody) | Biolegend | sig-39320 | 1:1000 dilution |
ChAT Antibody (Polyclonal Goat) | Millipore | AB144P | 1:100 dilution |
DeadEnd Fluorometric TUNEL system | Promega | G3250 | Follow manufacturer's directions for use |
Prolong Gold Antifade Reagent with DAPI | Invitrogen | P36935 | Use when coverslipping slides |
Fluorogold | Fluorochrome, LLC | not available | 2% solution |
Absolute Ethanol (200 proof) | Fisher Scientific | BP2818-4 | For making 70% ethanol for sanitizing and disinfecting |
Novex 10-20% Tricine gel | Life Technologies | EC6625BOX | For separating Aβ1-42 |
Novex Tricine SDS Running Buffer (10X) | Life Technologies | LC1675 | For running 10-20% Tricine gels |
Novex Tris-Glycine Transfer Buffer (25X) | Life Technologies | LC3675 | For transferring 10-20% Tricine gels |
SuperSignal Western Blot Enhancer | Thermo Scientific | 46640 | For enhancing Aβ1-42 signal; follow manufacturer's protocol |
Protran BA79 Nitrocellulose Blotting Membrane, 0.1 μm | GE Healthcare Life Sciences | 10402088 | For transferring 10-20% Tricine gels |
Xcell SureLock Mini-Cell | Life Technologies | EI0001 | Electrophoresis aparatus for running 10-20% Tricine gels |
GenTeal Lubricant Eye Gel | Novartis | not available | For keeping the mouse eyes moist during surgery; can be found in local pharmacy stores |
Refresh Optive Lubricant Eye Drops | Allergan | not available | For keeping the mouse eyes moist during surgery; can be found in local pharmacy stores; Can be used in place of GenTeal |
Betadine | Stoelting | 50998 | For sanitizing and disinfecting |
Round/Tapered Spatula | VWR | 82027-490 | For opening animal mouth |
Bulldog Serrefines Clamps (Jaw Dims. 9X1.6mm; Length 28mm) | Fine Science Tools | 18050-28 | Optional; For keeping scalp skin apart during injection |
Straight Fine Scissors (Cutting edge 25mm; Length 11.5cm) | Fine Science Tools | 14060-11 | For cutting scalp |
#3 Scalpel Handle | Fine Science Tools | 10003-12 | |
#11 Surgical Blade | Fine Science Tools | 10011-00 | For making scalp incision |
Student Standard Pattern Forcep (Tip Dims. 2.5×1.5mm; Length 11.5cm) | Fine Science Tools | 91100-12 | For holding scalp closed during suturing |
Trimmer Combo Kit | Kent Scientific | CL9990-1201 | For shaving hair |
T/Pump Warm Water Recirculator | Kent Scientific | TP-700 | For warming animal during surgery |
Resusable Warmining Pad (5" x 10") | Kent Scientific | TPZ-0510FEA | For attaching it to the T/Pump warm water recirculator to warm the animal during surgery |
Cordless Micro Drill | Stoelting | 58610 | Use 0.8mm steel burrs to drill holes in the skull |
Lab Standard Stereotaxic Instrument with Mouse & Neonatal Rat Adaptor | Stoelting | 51615 | |
Just for Mouse Stereotaxic Instrument | Stoelting | 51730 | Can use this in place of Stoelting Cat. #51615 |
Quintessential Stereotaxic Injector | Stoelting | 53311 | |
Dry Glass Bead Sterilizer | Stoelting | 50287 | For sterilizing stainless steel instruments |
Sterile Surgical Drape (18" x 26") | Stoelting | 50981 | |
Hamilton Syringe 50 ml, Model 705 RN SYR, NDL | Hamilton Company | 7637-01 | For brain injection; use different syringes for different solutions |
29 Gauge Needle, Small Hub RN NDL | Hamilton Company | 7803-06 | For attaching to the Hamilton syringe for brain injection |
1 ml BD Tuberculin Syringes | VWR | BD309659 | For administering anesthesia and saline |
30 Gauge Needle (0.5") | VWR | BD305106 | For administering anesthesia and saline |
Portable Electronic CS Series Scale (Ohaus) | VWR | 65500-202 | For weighing animals to determine anesthesia dose |
Hot plate (Top Plate Dims. 7.25×7.25in) | VWR | 47751-148 | For warming animals post-surgery |
Sofsilk Silk Suture C-1 Cutting 3/8, 12 mm | Covidien | S1173 | For closing wound |
Vetbond Tissue Adhesive (3M) | Santa Cruz Biotechnology | sc-361931 | Optional: for aiding in wound closure; Use with suture. |
Cotton-Tipped Wooden-Shaft Sterile Applicators | Fisher scientific | 22-029-488 | For cleaning and drying surgical wound |
Fisherbrand Superfrost Plus Microscope Slides | Fisher Scientific | 12-550-15 | For collecting brain sections |
VWR Micro Cover Glass 24 X 50 mm | VWR | 48393241 | For mounting microscope slides |
Thermo Scientific Nalgene Syringe Filter 0.2 μm | Fisher Scientific | 194-2520 | For sterilizing saline solution |
Sterile dual tip skin markers by Viscot Medical | Medline | VIS1422SRL91 | For marking coordinates on the skull |