Ce bio-essai emploie un poisson prédateur de modèle pour évaluer la présence de métabolites alimentation-dissuasion à partir d'extraits organiques des tissus d'organismes marins à des concentrations naturelles en utilisant une matrice d'aliments comparable nutritionnel.
Marine chemical ecology is a young discipline, having emerged from the collaboration of natural products chemists and marine ecologists in the 1980s with the goal of examining the ecological functions of secondary metabolites from the tissues of marine organisms. The result has been a progression of protocols that have increasingly refined the ecological relevance of the experimental approach. Here we present the most up-to-date version of a fish-feeding laboratory bioassay that enables investigators to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms. Organic metabolites of all polarities are exhaustively extracted from the tissue of the target organism and reconstituted at natural concentrations in a nutritionally appropriate food matrix. Experimental food pellets are presented to a generalist predator in laboratory feeding assays to assess the antipredatory activity of the extract. The procedure described herein uses the bluehead, Thalassoma bifasciatum, to test the palatability of Caribbean marine invertebrates; however, the design may be readily adapted to other systems. Results obtained using this laboratory assay are an important prelude to field experiments that rely on the feeding responses of a full complement of potential predators. Additionally, this bioassay can be used to direct the isolation of feeding-deterrent metabolites through bioassay-guided fractionation. This feeding bioassay has advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology.
l'écologie chimique développé grâce à la collaboration de chimistes et écologistes. Alors que le sous-discipline de l'écologie terrestre chimique a été autour depuis un certain temps, celle de l'écologie marine chimique est âgé de seulement quelques décennies, mais a fourni des informations importantes sur la structure des organismes marins 1-8 l'écologie et de la communauté de l'évolution. Profitant des technologies émergentes de plongée sous-marine et la spectroscopie RMN, chimistes organiques générés rapidement un grand nombre de publications décrivant de nouveaux métabolites invertébrés et les algues marines benthiques dans les années 1970 et 1980 9. En supposant que les métabolites secondaires doivent servir à quelque chose, beaucoup de ces publications attribuées propriétés écologiquement importantes à de nouveaux composés, sans preuves empiriques. À peu près au même moment, les écologistes ont également été profitent de l'avènement de la plongée sous-marine et en décrivant les distributions et l'abondance d'animaux et de plantes benthiques déjà connus from méthodes d'échantillonnage relativement inefficaces comme le dragage. L'hypothèse de ces chercheurs était que tout sessiles et corps mou doivent être défendus chimiquement pour éviter la consommation par les prédateurs 10. Dans un effort pour introduire l'empirisme à ce qui était contraire travail descriptif sur l'abondance des espèces, certains écologistes ont commencé à extrapoler défenses chimiques à partir de tests de toxicité 11. La plupart des tests de toxicité en cause l'exposition des poissons entiers ou autres organismes à des suspensions aqueuses d'extraits organiques bruts de tissus d'invertébrés, avec la détermination ultérieure des concentrations d'extraits secs de masse responsables de la mort de la moitié des organismes d'essai. Cependant, des essais de toxicité ne imitent la manière dont les prédateurs potentiels perçoivent proies dans des conditions naturelles, et des études ultérieures ne ont trouvé aucune relation entre la toxicité et la palatabilité 12-13. Il est surprenant que les publications dans des revues prestigieuses ont utilisé des techniques ayant peu ou pas ecological pertinence 14-15 et que ces études sont toujours largement cités aujourd'hui. Il est encore plus alarmant de constater que les études basées sur des données de toxicité continuent d'être publiés 16-18. La méthode d'analyse biologique décrit ici a été développé à la fin des années 1980 pour fournir une approche écologiquement pertinentes pour les écologistes chimiques marines pour évaluer défenses chimiques antiprédatrices. La méthode nécessite un prédateur de modèle pour déguster un extrait organique brut de l'organisme cible à une concentration naturelle dans une matrice alimentaire comparables sur le plan nutritionnel, fournissant des données d'appétence qui sont écologiquement plus significative que les données de toxicité.
L'approche générale pour évaluer l'activité antiprédatrices des tissus d'organismes marins comprend quatre critères importants: (1) un prédateur généraliste approprié doit être utilisé dans des essais d'alimentation, (2) métabolites organiques de toutes les polarités doivent être exhaustive extraites du tissu de la cibler organisme, (3) les métabolites doivent be mélangé dans un aliment nutritionnellement expérimental approprié à la même concentration volumétrique que l'on trouve dans l'organisme à partir duquel ils ont été extraits, et (4) la conception expérimentale et approche statistique doivent fournir un paramètre significatif pour indiquer distastefulness relative.
La procédure décrite ci-dessous est conçu spécifiquement pour évaluer défenses chimiques antiprédatrices chez les invertébrés marins des Caraïbes. Nous employons le labre bluehead, Thalassoma bifasciatum, comme un poisson prédateur modèle, car cette espèce est commune sur les récifs coralliens des Caraïbes et est connu pour déguster un large assortiment des invertébrés benthiques 19. Le tissu de l'organisme cible est d'abord extrait, puis combiné avec un mélange de nourriture, et enfin offert à des groupes de T. bifasciatum d'observer se ils rejettent les aliments extrait traité. Données test en utilisant cette méthode ont fourni des renseignements importants sur la chimie de défense des organismes marins 12,20-21, ll'histoire de l'IFE compromis 22-24, 25-26 et l'écologie des communautés.
La procédure décrite ici fournit un protocole de laboratoire relativement simple, écologiquement pertinent pour évaluer défenses chimiques antiprédatrices dans les organismes marins. Ici nous passons en revue les critères importants qui sont satisfaits par cet ensemble de méthodes:
(1) prédateur appropriée. Ce test alimentation utilise le labre bluehead, Thalassoma bifasciatum, l'un des poissons les plus abondantes sur les récifs coralliens dans les Caraïbes…
The authors have nothing to disclose.
We thank James Maeda and Aaron Cooke for assistance with the filming and editing of this video. Funding was provided by the National Science Foundation (OCE-0550468, 1029515).
Dichloromethane | Fisher Scientific | D37-20 | |
Methanol | Fisher Scientific | A41220 | |
Anhydrous Calcium Chloride | Fisher Scientific | C614-500 | |
Cryocool Heat Transfer Fluid | Fisher Scientific | 20-548-146 | For vacuum concentrator |
Alginic Acid Sodium Salt High Viscosity | MP Biomedicals | 154723 | |
Squid mantle rings | N/A | N/A | Can be purchased at grocery store |
Denatonium benzoate | Aldrich | D5765 | |
50 ml graduated centrifuge tube | Fisher Scientific | 14-432-22 | |
20 ml scintillation vial | Fisher Scientific | 03-337-7 | |
Disposable Pasteur pipets | Fisher Scientific | 13-678-20D | |
Rubber bulbs for Pasteur pipets | Fisher Scientific | 03-448-24 | |
Red bulbs for pellet delivery | Fisher Scientific | 03-448-27 | |
250 ml round-bottom flask | Fisher Scientific | 10-067E | |
Scintillation vial adapter for rotavap | Fisher Scientific | K747130-1324 | |
Weightboats | Fisher Scientific | 02-202B | |
Microspatula | Fisher Scientific | 21-401-10 | |
5 ml graduated syringe | Fisher Scientific | 14-817-53 | |
10 ml graduated syringe | Fisher Scientific | 14-817-54 | |
Razor blade | Fisher Scientific | S17302 |