The ability of cells to adapt to stress is crucial for their survival. Regulation of mRNA translation is one such adaptation strategy, providing for rapid regulation of the proteome. Here, we provide a standardized polysome profiling protocol to identify specific mRNAs that are selectively translated under stress conditions.
Regulation of protein synthesis represents a key control point in cellular response to stress. In particular, discreet RNA regulatory elements were shown to allow to selective translation of specific mRNAs, which typically encode for proteins required for a particular stress response. Identification of these mRNAs, as well as the characterization of regulatory mechanisms responsible for selective translation has been at the forefront of molecular biology for some time. Polysome profiling is a cornerstone method in these studies. The goal of polysome profiling is to capture mRNA translation by immobilizing actively translating ribosomes on different transcripts and separate the resulting polyribosomes by ultracentrifugation on a sucrose gradient, thus allowing for a distinction between highly translated transcripts and poorly translated ones. These can then be further characterized by traditional biochemical and molecular biology methods. Importantly, combining polysome profiling with high throughput genomic approaches allows for a large scale analysis of translational regulation.
Regulation of protein synthesis (translation) is a key cellular process which is intimately linked to cellular survival. Given that translation consumes more than 50% of cell’s energy, it is not surprising that translation is tightly regulated and that perturbations in translation are not well tolerated. Conversely, many aberrant cellular processes require that translation machinery and translation output (i.e. proteome) have to be modified. This is often the case in various stress response and disease states, and is probably best exemplified in cancer. A key advantage of translational control is the ability of cells to rapidly reprogram the protein output in response to various external and internal triggers, thereby fine tuning mechanism that tips the balance between cell survival and death1.
Two aspects of translational control are particularly interesting; understanding of the nature of the regulatory mechanism(s) and control elements that allow for specific translation, and identification of specific mRNAs and their protein products that participate in the cellular response to the particular trigger that elicited selective translation in the first place. Polysome profiling is a technique that allows effective study of both processes.
The overall goal of the polysome profiling technique is to study and quantify the translation state of specific mRNAs under different cellular conditions. The principle of the technique is to capture mRNA translation by ‘‘freezing’’ actively translating ribosomes on different transcripts and separate the resulting polyribosomes by ultracentrifugation on a sucrose gradient, thus allowing for a distinction between highly translated transcripts (bound by several ribosomes) and poorly translated ones (bound by one or two ribosomes). In this particular protocol, the antibiotic cycloheximide that binds to the 60S ribosomal subunit and blocks the release of deacetylated tRNA from the ribosome E site2, is used to inhibit ribosome translocation and stall ribosomes on translating mRNAs. However, other blocking agents such as emetine that also blocks translation elongation3, can be used.
Unlike the western blotting and 35S-Methionine labeling techniques that measure the final output of the translation process, polysome profiling has the advantage of measuring ribosomes association with actively-translated mRNAs, thus allowing for a more detailed study of translation mechanisms under different conditions. Hence, the technique can be easily adapted to specifically study different modes of translation4-6, proteins factors involved in translation regulation7-9, stress conditions affecting protein synthesis1,10,11 or the effects of mRNA structures such as IRES or upstream open reading frames on protein synthesis12-14. Nowadays, polysome profiling applications are even broader with the use of DNA microarrays 15 or next-generation sequencing 16,17 to analyze polysomes-associated mRNAs.
NOTE: A note on working with RNA: Take standard precautions to protect against RNA degradation by RNases. Use gloves, barrier pipette tips, RNase-free plasticware and chemicals in all steps of the protocol. Use ultrapure or DEPC-treated water for all solutions. Decontaminate any suspected surfaces with RNase inactivation solution following the manufacturer’s protocol.
1. Preparation of Solutions.
2. Preparation of Sucrose Gradient Using an Automated Gradient Maker
3. Cell Lysis and Ultracentrifugation.
4. Gradient Fractionation System Instrument Set-up.
5. Gradient Fractionation and Collection of Samples.
6. Wash
NOTE: (this is an optional step to be performed only if multiple gradients are to be collected).
7. Final Clean up.
8. Isolation of RNA from Sucrose Fractions.
9. Isolation of Proteins from Sucrose Fractions.
We have recently described a novel role for the tumour suppressor PDCD4 as a selective translation inhibitor of IRES-harboring mRNAs encoding apoptotic inhibitors XIAP and Bcl-xL12. Polysome profiling was a key technique to demonstrate the specific involvement of PDCD4 in IRES-mediated translation. HEK293 cells were transiently transfected to deplete endogenous levels of PDCD4 (Figure 1A) and then subjected to polysome profile analysis. We observed that reducing levels of PDCD4 did not impair global cellular translation, as judged by the lack of changes in the polysome profile when comparing siCTRL and siPDCD4 treated cells (Figure 1B). Similarly, polysome distribution of non-IRES variant of XIAP 19 was unchanged between treated and untreated cells (Figure 1C). In contrast, polysome distribution of the two IRES-harboring mRNAs, XIAP and Bcl-xL, was significantly altered. In the absence of PDCD4 the distribution of these two mRNAs is shifted into heavy ribopolysomes (Figure 1D, E). Since this is not accompanied by changes in steady-state levels of XIAP and Bcl-xL mRNA (Figure 1F) these results demonstrate enhanced translation of XIAP and Bcl-xL in cells with reduced PDCD4 levels, which was further confirmed by Western blotting (Figure 1G).
Figure 1: Polysome profiling identifies PDCD4 as selective inhibitor of XIAP and Bcl-xL translation. (A) HEK293 cells were treated with PDCD4 siRNA or control (CTRL), non-targeting siRNA, lysed and subjected to Western blot analysis with anti-PDCD4 and anti-Nucleolin antibodies to verify the extent of PDCD4 knock-down. (B) PDCD4 was knocked down as in (A) and cell lysates were subjected to polysome profiling. Representative polysome profile is shown in the top panel; distribution of the XIAP non-IRES (C), Bcl-xL (D), and XIAP IRES (E) mRNAs relative to that of GAPDH is shown as the percent of total mRNA (% mRNA) in each fraction. (F) Steady-state mRNA levels were measured by RT-qPCR in PDCD4 siRNA or control (CTRL) siRNA treated cells. (G) The lysates from (A) were also subjected to western blot analysis with anti-XIAP, anti-Bcl-xL, and anti-Nucleolin antibodies. (NB. Data presented in Figure 1 were originally published in 12) Please click here to view a larger version of this figure.
Polysomal profiling is a powerful technique that allows for the quantification of the state of translation of specific transcripts under different treatment conditions. It is a very simple technique in principle yet it requires several steps of execution, some of which are critical for producing good polysome profiles. These key steps are: 1) using RNase-free chemicals and plasticware, 2) preparing good sucrose gradients (in our experience a 10-50% sucrose gradients work best for efficiently resolving 40/60S subunits and mRNAs with bound ribosomes), and 3) using cells that are exponentially growing and no more than 80% confluent in order to capture the highest rates of translation. This latter step should be taken into consideration when doing long cell treatments, such as gene knockdown or overexpression, so that the amount of cells to plate will be a function of how much the cells will be confluent at endpoint.
In the results presented here, polysome profile analysis was an important tool for assessing PDCD4 role in the translation regulation of the IRES-harboring mRNAs XIAP and Bcl-xL12. The fact that we did not observe any change in the general polysome profiles upon PDCD4 knock-down (Figure 1B) allowed us to conclude that PDCD4 did not impair global cellular translation under the conditions of the experiment. We next used RT-qPCR analysis to determine the distribution of the XIAP and Bcl-xL mRNAs in cells treated with PDCD4 or control siRNAs. qPCR is a method of choice for analyzing polysome profiles, as opposed to standard RT-PCR or Northern blotting, because it allows for a quantitative rather than semi-quantitative analysis of mRNA distribution and for the detection of subtle shifts in translational efficiency between treatments. Using this technique, we were able to show that the distribution of the XIAP and Bcl-xL mRNAs (expressed as a percent of total target mRNA across the gradient) was significantly shifted into heavy polyribosomes (mRNAs with a large number of ribosomes associated with them) after PDCD4 knock-down (Figure 1D, E), thus indicating an increase in translation of these mRNAs. This was further confirmed by an increase in XIAP and Bcl-xL protein levels but not in their steady-state RNA levels (Figure 1F, G). Importantly, the polysome distribution of the non-IRES variant of XIAP was unchanged between treated and untreated cells (Figure 1C). Alternatively, translational efficiency could be presented as a ratio of mRNA content in polysomes (usually fractions 5 to 10) versus monosomes (usually fractions 2 to 4)14.
The use of controls throughout the protocol is important in validating any polysome profiling result, as peaks observed from absorbance readings at 254 nm cannot on their own be attributed to ribosomal RNA (detergents, such as Triton X-100 strongly absorb in this region of the spectrum and may obscure 40/60S peaks at the top of the gradient). Blank gradients without lysate and/or with lysate buffer need to be run to determine the relative contribution of the buffers to the absorbance at 254 nm. Artefactual higher order structures can also lead to erroneous interpretations of polysomes where there are in fact none (e.g. “pseudo-polysomes”20). Sequestering magnesium (used throughout the procedure to stabilize 80S ribosomes) with the divalent cation chelator EDTA added to lysates and to the gradient buffer (20 mM for 15 min) will cause separation of the ribosome into its component small (40S) and large (60S) subunits. Thus, if absorbance peaks recorded at 260 nm are indeed polysomes, EDTA treatment will collapse the profile such that a single maximum will be observed near the top of gradient that corresponds to free mRNA and ribosomal units (data not shown). Coincident with EDTA-induced collapse of the profile, all of the specific targets analyzed by qPCR should now be found at the top of the gradient.
The number of ribosomes associated with a mRNA is not always an indicator of how efficiently that particular mRNA is being translated. Indeed, there are specific contexts in which active translation on polysomes becomes stalled 21,22 which the reader should be aware of. Determining whether or not transcripts are actively engaged with the translation machinery can be done by a) treating the sample with puromycin, which unlike EDTA, causes 'run-off' of ribosomes that are actively translocating across a mRNA, or b) treating the sample with homoharringtonine which inhibits translocation of only the first ribosome at the start codon, again causing 'run-off' of any downstream translocating ribosomes.
The use of control transcripts for qPCR analysis is also critical. The selection of transcripts that are not affected by different treatment conditions such as some housekeeping genes (GAPDH, Actin, Tubulin, Nucleolin), ribosomal mRNAs (18S, RPL13A) or in this case the non-IRES variant of the XIAP IRES, is important in verifying if the treatment’s effect on translation is specific or generalized. These control transcripts can be used to normalize the distribution of the analyzed mRNAs as was done here (XIAP and Bcl-xL mRNAs were normalized to GAPDH mRNA and expressed as a percentage of the total mRNA content represented by the sum of mRNA content in every fraction) or alternatively, target and control mRNAs can be expressed as absolute values and shown separately. qPCR analysis of the input lysates (usually 10% of total volume) is another step that will control for the distribution of specific mRNAs. Ideally, the mRNA content of a specific transcript in the input lysate should be comparable to the sum of mRNA content in all 10 fractions analyzed. Finally, an optional step to control for the phenol:chloroform extraction step is to spike each polysome fraction with an in vitro transcribed reporter mRNA (such as CAT, chloramphenicol acetyl transferase) that will be subsequently quantified by qPCR and can even be used to normalize the data 14.
As with any technique, the polysome profiling presents some limitations. The fact that usually a minimum of 10 fractions (more subtle shifts in translation efficiency may require 20 or more) need to be collected in order to have nice polysome distributions makes this step limiting, in the sense that only a maximum of 4 samples can be analyzed at a time to be able to comfortably handle RNA extraction and qPCR analysis of 40 samples and 4 input controls at once. The sample size can easily add up with how many transcripts are to be analyzed and how many qPCR replicates to do, and this can be costly. Another limitation of a qPCR-based polysomal profiling analysis is that it can only be done on a candidate-based approach (where the transcripts to be analyzed are known beforehand) and cannot be applied for genome-wide analysis of translation. However, at the beginning of the 21st century, investigators started to interrogate their polysomal RNA at a genomic level using DNA microarrays 15 and more recently with next-generation sequencing 16,17. In this powerful approach, polysomal profiling is performed as described in this protocol except that rather than performing qPCR analysis of individual fractions, monosomes fractions (usually fraction 2-4) and polysomes fractions (usually fractions) are pooled together and variations in global translation analyzed by DNA microarray or whole-genome RNA sequencing. Hence with this approach, it is possible to assess all the mRNAs whose distribution shifts from polysomes to monosomes (decrease in translation) or vice-versa (increase in translation) upon a specific treatment. Validation and quantification of specific mRNA polysomes distribution can then be done by qPCR. An even more powerful use of the polysomal profiling principle is ribosome profiling. Further high throughput extension of this technique was reported recently that allows for simultaneous monitoring of hundreds of polysome fractions 23. This provides a clear advantage when probing translational efficiencies of mutant collections or in a large-scale RNAi screens. Ribosome profiling is a technique that takes advantage of next generation sequencing to map RNA fragments protected by ribosomes (ribosome footprints) engaged in protein synthesis24,25. In this technique, ribosome translocation can be inhibited with cycloheximide (reversible) or emetine (irreversible) followed by cell lysis and RNase digestion to yield a population of ribosome footprints. Ribosomes are enriched, total RNA is isolated, and contaminating ribosomal and mitochondrial ribosomal RNA is removed. RNA footprints of approximately 26-28 nucleotides are isolated, reverse transcribed, converted into a cDNA library and sequenced26. Unlike standard polysome profiling, this approach not only identifies specific mRNAs that are translationally regulated but also yields mRNA-specific information at codon resolution such as the exact occupation and density of ribosomes along a specific transcript. This is particularly of interest for mRNAs with specific modes of translation such as IRES-harboring mRNAs, as it could give more information on where on the transcript ribosome-recruitment is occurring.
The authors have nothing to disclose.
We are grateful to the past and present members of the laboratory, in particular Urszula Liwak, for critical discussion regarding polysome profiling protocols and sharing of data. This work was supported by operating grants from the Canadian institutes of Health Research, Cancer Research Society, and the National Science and Engineering Research Council of Canada to MH. MDF was supported by the Vanier Canada Graduate Scholarship Doctoral Award and the Ontario Graduate Scholarship, and this work forms part of her Ph.D. dissertation.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Gradient Master 108 automated gradient maker | BIOCOMP | 107-201M | |
Auto Densi-Flow two-chamber gradient maker | LABCONCO | 4517000 | |
Beckman Ultracentrifuge | Beckman Coulter | Model # L-100-XP | |
Density gradient fractionator | TELEDYNE ISCO | 69-3873-246 | Composed of: tube piercing system, peristaltic pump, UA-6 Detector with 254 and 280nm filters and Foxy R1 Fraction Collector |
WinDaq data acquisition software | DATAQ INSTRUMENTS | WINDAQ/LITE | http://www.dataq.com/products/software/acquisition.htm |
Pollyallomer ultracentrifuge tubes (for SW41, 14×89 mm) | Beckman Coulter | 331372 | |
Nuclease-free 2-ml centrifuge tubes (dolphin nose) | DiaMed | PRE1900-N | |
Nuclease-free 2-ml centrifuge tubes (flat bottom) | SafeSeal | 12000 | |
Sucrose (nucleases-free) | Calbiochem | 573113 | MW = 342.3 g/mol |
Cycloheximide | SIGMA | C7698 | MW = 281.4 g/mol. Resuspend in DMSO and keep at -80C for long term sotrage. Caution: TOXIC! Can cause repiratory tracts and skin irritation. Wear mask when weighing. |
Sodium chloride (nucleases-free) | OmniPur | 7710 | MW = 58.44 g/mol |
MgCl2.6H2O (nucleases-free) | OmniPur | 5980 | MW = 203.3 g/mol |
Tris Base (nucleases-free) | J.T. Baker | 4109-01 | MW = 121.14 g/mol |
Triton X-100 | OmniPur | 9400 | Caution: TOXIC! Can cause repiratory tracts and skin irritation |
Recombinant RNasin Ribonuclease Inhibitor | Promega | N2515 | |
RNaseZap Rnase inactivation solution | Ambion, Life Technologies | AM9780 | |
GlycoBlue Coprecipitant (15 mg/mL) | Invitrogen, Life Technologies | AM9516 | |
Acid-Phenol:Chloroform, pH 4.5 (with IAA, 125:24:1) | Ambion, Life Technologies | AM9722 | Caution: TOXIC ! Can cause repiratory tracts irritation as well as skin irritation and corrosion |