This protocol details the optimized extraction of apoplast washing fluid from plant leaves, using French bean plants (Phaseolus vulgaris) as a model example.
The apoplast is a distinct extracellular compartment in plant tissues that lies outside the plasma membrane and includes the cell wall. The apoplastic compartment of plant leaves is the site of several important biological processes, including cell wall formation, cellular nutrient and water uptake and export, plant-endophyte interactions and defence responses to pathogens. The infiltration-centrifugation method is well established as a robust technique for the analysis of the soluble apoplast composition of various plant species. The fluid obtained by this method is commonly known as apoplast washing fluid (AWF). The following protocol describes an optimized vacuum infiltration and centrifugation method for AWF extraction from Phaseolus vulgaris (French bean) cv. Tendergreen leaves. The limitations of this method and the optimization of the protocol for other plant species are discussed. Recovered AWF can be used in a wide range of downstream experiments that seek to characterize the composition of the apoplast and how it varies in response to plant species and genotype, plant development and environmental conditions, or to determine how microorganisms grow in apoplast fluid and respond to changes in its composition.
The plant apoplast is the intercellular space that surrounds plant cells. This is a dynamic environment in which many metabolic and transport processes take place. The major structural component of the apoplast is the cell wall, which is assembled and modified by enzymes, structural proteins and metabolites located within the apoplast. In healthy plant cells the apoplast is generally maintained in an acidic state allowing amino acids, sugars and other nutrients to be imported from the apoplast to the cytoplasm by H+ symport1. During sucrose transport, sucrose moves from photosynthetic sources through the apoplast and into phloem vasculature; sucrose is then transported by an osmotic potential maintained by apoplastic invertases cleaving sucrose in the sink organs2. Sugars and other nutrients can also be transported upwards and accumulate in stomatal cavities through the transpiration stream3.
The apoplast also represents an environmental niche where many pathogens establish their parasitic lifestyle. Bacterial plant pathogens have the ability to multiply to high densities in the apoplast, which they access through natural openings such as stomata or through wounds4. The concentration of amino acids and other nitrogen compounds in tomato apoplast have been shown to be sufficient to support the nutritional requirements of bacterial and fungal pathogens5,6. Primary defense responses towards microbial pathogens also occur in the apoplast, namely the production of reactive oxygen species by extracellular peroxidases and oxidases and the strengthening of the cell wall through cross-linking and callose deposition7. The plant cell wall is rich in secondary metabolites with anti-microbial activities; the biochemical nature of these secondary metabolites varies between species8.
As a result of the above-mentioned and other processes, leaf apoplastic fluid contains a variety of proteins, sugars, organic acids, amino acids, secondary metabolites, metals and other cations (e.g., Mg2+, K+, Na+, Ca2+, Fe2/3+). Solute concentrations in the apoplast of shoots are controlled largely by the balance of transport processes occurring between the apoplast and the xylem, phloem and cytoplasm9. However, metabolic reactions and microbial growth also consume or produce apoplastic solutes. The composition of the apoplast is known to differ between plant species and genotypes and in response to changing environmental conditions including light, nutrition and biotic and abiotic stresses9. By studying the composition of the apoplast and how it changes, including properties such as redox and osmotic potential, pH, nutrient/metabolite availability and enzymatic activities, one can gain novel insights into how plants respond to their environment. Understanding or characterizing the molecular changes that occur in the apoplast solution is complicated because it is a spatially structured and dynamic compartment in which metabolites and/or ions may be volatile, transient or associated with the cell wall and plasma membrane. Furthermore, different analytical techniques are required to cover the range of different chemical types.
To study the composition of the soluble apoplast, fluid usually needs to be extracted from the tissue. Several methods exist to extract apoplast fluid from various tissues, including a newly proposed filter strip method10, but the most established extraction method for leaves is infiltration-centrifugation. This technique has been evaluated previously11-13 and Lohaus et al. 200114 provide a thorough examination of many of the method’s technical parameters. As implied by the name, the infiltration-centrifugation technique is a two-step method that essentially involves replacement of the apoplastic air space with an aqueous infiltration fluid, which mixes with the native apoplastic fluid, followed by recovery of the infiltration/apoplastic fluid mixture by gentle centrifugation of the leaves. As the recovered fluid is diluted and does not contain all compounds present in the apoplast (see below), this fluid is commonly known as apoplast washing fluid (AWF), or sometimes intercellular washing fluid, rather than apoplastic fluid. The infiltration-centrifugation technique is easily scalable allowing single or pooled AWF samples of adequate volume to be generated and subjected to a wide range of downstream biochemical and analytical techniques (e.g., protein electrophoresis, enzyme activity measurement, NMR, many types of chromatography and mass spectrometry). Leaf AWF is also useful as an apoplast mimicking growth medium for studying the interaction of plant colonizing microbes with their environment 5.
In the following protocols we describe how to perform the infiltration-centrifugation technique using Phaseolus vulgaris cv. Tendergreen leaves, and provide some examples of downstream analyses with a focus on metabolomics. Importantly, methods to assess the quality of AWF are provided along with advice to optimize the procedure for different leaf types.
NOTE: The choice of starting leaf material and standardization of plant growth conditions is critical as these factors can greatly affect the quality, variability and yield of AWF (Figure 1). Parameters to consider are shown in Table 1 and are discussed in more detail in the discussion.
Parameter | Example standardizations | ||
Phaseolus vulgaris | Solanum lycopersicum | Arabidopsis thaliana | |
Leaf type | First true leaves, fully expanded, healthy | 2nd and 3rd leaves starting from bottom, 4 largest leaflets taken apical leaflet not used for apoplast extraction | Fully expanded rosette leaves |
Plant age | 21 days | 7 – 9 weeks | 7 weeks |
Time of day | Middle of light period (12:00) | Middle of light period (12:00) | Middle of light period (12:00) |
Hydration | All plants well watered 1 hr pre-harvest | All plants well watered 1 hr pre-harvest | All plants well watered 1 hr pre-harvest |
Light | 16 hr light, 400 µmol m-2 sec-1 | 16 hr light, 400 µmol m-2 sec-1 | 10 hr light (short day) from week 2, 400 µmol m-2 sec-1 |
Humidity | 70% | 70% | 70% |
Temperature | 22 °C light, 18 °C dark | 22 °C light, 18 °C dark | 21 °C |
Table 1. Examples of standardized parameters for leaves used in AWF extractions.
1. Generating Apoplast Washing Fluid
NOTE: During this protocol hazardous materila inculding microbial pathogens from infected leaves should not be washed down the drain; rather proper disposal procedures should be used.
2. Assays for Cytoplasmic Contamination
3. Calculation of the Apoplast Dilution Factor
4. Concentration of AWF to Full Strength by Freeze Drying
5. Metabolite Analysis by Gas Chromatography Mass Spectrometry17
Typical results for AWF extractions performed on healthy 3 week old P. vulgaris cv. Tendergreenleaves, using distilled water as the infiltration fluid are shown in Table 2. Young P. vulgaris leaves are amenable to infiltration, and at the centrifugation speed used here (1,000 x g) the removal of the majority of infiltration fluid by centrifugation can be seen directly as the leaves revert to their original green colour. P. vulgaris leaf fresh weight was on average 1.1 x g before infiltration and yielded 0.5 ml of AWF per gram fresh weight. The protein concentration of the AWF was determined to be 0.18 ± 0.08 mg/ml using a standard Bradford protein assay. The dilution factor for these leaves, calculated by measuring indigo carmine dilution, was 2.3 ± 0.3 fold. The above values can vary substantially between species and pilot experiments are required to determine the yield of AWF per gram leaf fresh weight, as well as the AWF protein concentration and dilution factor that can be expected for a given leaf type.
Damage to the integrity of the cells can occur both during the infiltration step, if the changes in pressure are too rapid, and during the centrifugation step if the centrifugal force is too high. It is therefore necessary to assay AWF samples for markers of cytoplasmic contamination; ideally, multiple independent assays are performed. Here, the results from three possible assays are reported in Table 2. In well-performed extractions of P. vulgaris AWF, G6PDH was undetectable by a standard enzyme assay. This is consistent with other reports where G6PDH activity becomes detectable only above a threshold centrifugal force12. In contrast, a baseline level of malate dehydrogenase activity (2.5 U/ml) was detectable in all P. vulgaris AWF samples using a standard metabolic assay. Increasing the centrifugal force above a threshold of 1,000 x g resulted in increased MDH activities (results not shown). As the apoplast from other species is known to contain endogenous MDH activity18, the amount detected here is considered genuine apoplastic activity and significant increases above this baseline level are indicative of contamination. Metabolites that are thought to be predominantly cytoplasmic, such as hexose-6-phosphates, can also be used to assess contamination of AWF. Here, GC-MS analysis detected zero or trace levels of G-6-P in AWF extractions. By contrast, in cut maize root sections, G-6-P was detected after AWF extraction at all centrifugation speeds and increased in concentration at higher speeds, indicating cytoplasmic contamination10.
Metabolite analysis by GC-MS of P. vulgaris leaf AWF typically yields 40 – 60 identifiable metabolites and an approximately equal number of unidentifiable compounds (Figure 2). Organic acids, simple sugars, and amino acids represent the bulk of the identifiable metabolites, however, secondary plant metabolites have also been detected and quantified from AWF11. Several example peaks from these different molecule classes are labeled in Figure 2. Further downstream analytical techniques are applicable to these AWF samples to quantify various molecules, for example: ICP-MS, NMR, HPLC, atomic absorption spectroscopy, protein mass spectrometry.
The protein component of the apoplast is also represented in the AWF as shown in the Coomassie Brilliant Blue stained SDS-PAGE gel in Figure 3. Among other roles, the apoplastic enzymes are responsible for the synthesis of the cell wall and the creation of extracellular reactive oxygen species. Proteomic studies of AWF from various species have identified dozens of individual proteins and shown that the protein component of the apoplast responds to environmental stress13,19. Ideally AWF extract should be free from contamination by cytoplasmic proteins such as Rubisco; however in practice this is difficult to achieve. The presence of a Rubisco protein band at ~53 kDa following SDS-PAGE provides a further qualitative assay for the integrity of AWF samples. For example, the sample loaded in lane 2 in Figure 3 contains a greater amount of Rubisco contamination that of lane 1.
Phaseolus vulgaris AWF | |
Volume of AWF (ml g-1 leaf FW) | 0.49 ± 0.09 |
Protein conc. (mg ml-1) | 0.18 ± 0.08 |
Dilution factor | 2.3 ± 0.3 |
G6PDH activity (U ml-1) | none detected |
Glc-6-P (mg ml-1) | none detected |
MDH activity (U ml-1) | 2.5 ± 0.9 |
Table 2. Typical results for AWF extractions from P. vulgaris cv. Tendergreen leaves.
Figure 1. Standard apoplast extraction workflow. The numbers refer to steps in the protocol.
Figure 2. An example GC-MS chromatogram of P. vulgaris cv. Tendergreen AWF. The numbered example metabolite peaks are: 1-malonate, 2-phosphate, 3-succinate, 4-unknown, 5-malate, 6-asparagine, 7-ribitol (internal standard), 8-citrate, 9-glucose, 10-inositol, 11-caffeic acid, 12-sucrose.
Figure 3. An example SDS-PAGE Coomassie stained gel of P. vulgaris AWF leaf extracts. This gel provides a comparison between the protein components of two AWF extractions that differ in the amount of cytoplasmic contamination by the abundant plastidial enzyme Rubisco. Following AWF extraction both samples were subjected to acetone protein precipitation in a 4 fold excess (v/v) of cold acetone and resolubilized in water at one tenth the original volume. Lanes 1 and 2 contain 40 µg of protein. The band corresponding to the Rubisco large chain (~53 kDa) is indicated by an arrow. Mr: protein molecular weight markers.
Optimizing the plant tissue source
Biological and technical variation can be large when performing apoplast extractions, thus a highly standardized workflow is helpful to increase continuity across experiments (Figure 1). Importantly, the source of plant tissue must be standardized, including leaf type, leaf age, growth/environmental conditions and time of day (Table 1). Large differences exist in the ease with which different leaves are infiltrated and the AWF subsequently recovered by centrifugation; these differences are correlated with stomata number, aperture size and mesophyll resistance12,14. Even among different cultivars of P. vulgaris there are large differences in the ease and yield of the AWF extraction procedure; for example leaves of the Tendergreen variety used here are more amenable to AWF extraction using this method than the Canadian Wonder cultivar. Within P. vulgaris the first true leaves are the biggest and the easiest to infiltrate, making them the obvious choice for apoplastic extractions. The apoplastic air and water volume has been shown to vary with leaf age in several species leading to differences in AWF extractability12,14. In P. vulgaris, older leaves become substantially more difficult to infiltrate and yield less AWF upon centrifugation; therefore leaves were harvested when they reached full expansion. Leaves which are difficult to infiltrate subsequently require higher centrifugation speeds to recover the AWF. One should therefore carefully screen several different leaf types and varieties before deciding upon a tissue source for large scale AWF extractions.
Plant growth conditions must also be standardized as much as possible within the context of the experiment. The use of growth cabinets is preferable as they allow consistent humidity, temperature and light intensity regiments to be maintained. The harvesting of leaves should always occur at the same time of day because the concentrations of metabolites, enzymes, etc. vary throughout the diurnal cycle14. Finally, to ensure that the plant leaves all have similar turgor pressure, the plants should be watered soon before (~1 hr) the harvest.
Optimization of leaf infiltration and centrifugation
Undesirable cytoplasmic contamination of the AWF due to partial cell lysis will result if the mechanical stress encountered by the cells is too high during the infiltration or centrifugation steps. Therefore, the procedure for a given leaf type should be an optimized trade-off between maximizing yield and minimizing cytoplasmic contamination of the AWF. In all cases, one should use the lowest centrifugation speed at which AWF can be recovered to avoid possible mechanical disruption of the leaf cells. Optimization of the centrifugation speed should be determined empirically for each leaf type by monitoring the volume recovered and apoplast contamination over a range of centrifugation speeds. It has been observed that marker enzyme activities, such as MDH, G6PDH and glucose-phosphate isomerase, remain low until a threshold centrifugal force is surpassed, above which these activities increase rapidly, presumably due to cytoplasmic leakage9,12,14. The use of Parafilm for support during the centrifugation step, as noted by Baker et al. 201211, can improve the efficacy of the AWF extraction and may minimize mechanical damage to the leaf blade caused by excessive folding and compression. Furthermore, the use of Parafilm improves visualization of the leaf after centrifugation when one should examine the leaf for damage and completeness of the AWF extraction.
Nouchi12 describe the optimization of AWF recovery from cut rice leaf sections, which are difficult to infiltrate and require higher centrifugation speeds to collect AWF because of their small stomatal openings. Improved wetting of the rice leaf surface, either by presoaking the leaves in distilled water or the addition of a surfactant to the infiltration fluid, facilitated the infiltration process. A higher centrifugation speed (6,000 x g) was also used while monitoring for apoplastic contamination12. When using cut leaf sections there is always the risk that cytoplasmic contamination will be more prevalent even with extensive washing of the wound sites; cut leaves should therefore only be used when necessary.
For many studies distilled water is used as the infiltration fluid11. However, compounds may be added to the infiltration fluid, such as salts or buffers, to improve the extraction of certain apoplastic compounds, especially proteins13. Lohaus14 evaluated the effect of ionic and osmotic strength on the composition of the recovered AWF and found them to be negligible. Changes in pH of the infiltration medium, however, may affect the AWF composition14.
Proper handling and storage of the extracted apoplastic fluid is important. AWF has been shown to contain an abundance of proteases and other enzymes13,20, as well as volatile organic compounds. Therefore, to reduce changes to the composition of AWF after recovery it is recommended to keep samples on ice or otherwise stored at -80 °C. Furthermore, enzymatic assays of AWF should be performed as soon as possible after extraction to limit enzyme inactivation due to proteolysis, prolonged dilution or freeze-thawing.
The process of infiltration dilutes the apoplastic fluid and it is often necessary to determine the extent of this dilution. The centrifugation step may also dilute the AWF with water from intracellular compartments. A dilution factor is needed to estimate in vivo apoplast chemical concentrations when measurements are made on AWF. A dilution factor is also needed to concentrate AWF back to full strength when it is being used as an apoplast mimicking growth medium for microbes – thus matching in vivo metabolite concentrations as accurately as possible. Several variations exist on the method described in step 4 for determining the AWF dilution factor by measuring the dilution of a marker compound added to the infiltration fluid. For all methods the AWF dilution calculation assumes that the infiltration fluid is not appreciably absorbed or diluted by the leaf cells during the AWF recovery process. This assumption has been previously verified for the infiltration step14 but is unverified for the centrifugation step. The marker compound must also not be absorbed, transported or modified while in the apoplast. Indigo carmine is the most widely used and thoroughly tested of dyes used for AWF dilution calculations. Indigo carmine displays a low absorbance to cation exchange resin and isolated cell walls and was shown to be suitable for AWF calculations in Brassica napus, Pisum sativum, Solanum lycopersicum and Glycine max11,21,22. However, in some leaf types, e.g., rice and cucumber, indigo carmine appeared not be fully recovered after infiltration, which would lead to an underestimation of the AWF dilution factor12,21. The lack of recovery of indigo carmine may be due to its susceptibility to cleavage into isatin sulfonate by superoxide23, which is known to be produced in the apoplast, especially under stress24. Cleavage of indigo carmine into isatin sulfonate will result in a loss of absorbance at 610 nm and an increase at 245 nm. Whether this reaction occurs to an appreciable extent in the apoplast, or whether this reaction can be inhibited by the addition of superoxide scavengers to infiltration fluid has not been investigated to date. Blue dextran has been used instead of indigo carmine for quantification of the AWF dilution factor in rice leaves12, though its stability and recovery in AWF has not been reported. Alternatively, radiolabelled compounds such as [14C] sorbitol or other quantifiable internal standards can be used instead of dyes and the decrease in radioactivity or concentration measured and used to calculate the dilution factor in an analogous way11,14,25.
Limitations of the technique
A few caveats exist for the infiltration-centrifugation AWF isolation method. First, the dilution of the apoplast during infiltration may elicit a response from the plant. If the surrounding leaf cells detect a diminished concentration for certain components of the apoplastic fluid, they may respond by excreting further metabolites, distorting the interpretation of metabolite concentrations. In an assessment of this problem it was observed that neither the time between infiltration and centrifugation nor moderate differences in the ionic strength of the infiltration fluid affected the composition of the extracted AWF14,22. Therefore, any artifacts resulting from apoplast dilution are thought to be minimal.
A second potential drawback is that elution of AWF by centrifugation does not capture all the molecules present in the apoplast for several reasons. Some compounds, in particular cations and proteins may be tightly associated with the negatively charged cell wall and not elute with the AWF13. Other molecules such as proteins may be too large to elute efficiently out of the apoplast at the centrifugation speeds used14. Reactive oxygen species are an important class of compound produced in the apoplast, but due to the short-lived nature of these compounds, and unspecified requirements for their production, their presence is not well captured by AWF extraction. It is not known how accurately AWF represents the in vivo composition of the apoplast fluid and this may vary between species.
Several assays exist to determine cytoplasmic contamination, though none are universally accepted. Assays of predominantly cytoplasmic enzymes (e.g., G6PDH, hexose phosphate isomerase, MDH) have the benefit of being easy to perform but may not correlate well with cytoplasmic leakage14,18. The assessment of cytoplasmic metabolites (e.g., hexose phosphates, chlorophyll) is perhaps more indicative but is less well established11. Nevertheless, either type of assay can be useful for relative quantification of apoplastic contamination between samples. Ideally, multiple independent measurements should be used to validate the integrity of the AWF sample.
While acknowledging its limitations, the infiltration-centrifugation technique described here remains a simple and robust technique in the study of apoplastic proteins, primary and secondary metabolites and inorganic ions.
The authors have nothing to disclose.
This work was supported by grants BB/J016012/1 and BB/E007872/1 from the UK Biotechnology and Biological Sciences Research Council (BBSRC) to Gail Preston.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Eppendorf Microcentrifuge Tubes | Eppendorf | 22364111 | |
razor blade | Fisher | 12-640 | |
60 ml syringe | Becton Dickinson | 300865 | |
20 ml syringe | Becton Dickinson | 300613 | |
4 inch parafilm | Bemis | PM-996 | |
side arm flask | SciLabware | 12972831 | |
vacuum source | |||
5 ml pipette tips | Fisher | 50-813-28 | |
centrifuge | Beckman Coulter | 392932 | |
Swinging bucket rotor | Beckman Coulter | 369702 | |
indigo carmine | Sigma | I8130 | |
microplate reader | Tecan | Infinite 200 | |
96 well plates | Becton Dickinson | 353072 | |
freeze dryer | SciQuip | Christ Alpha 2-4 LD | |
microcentrifuge | biorad | 166-0612EDU | |
oxaloacetic acid | Sigma | O4126 | |
D-glucose-6-phosphate | Sigma | G7250 | |
NADH | Roche | 10128023001 | |
MDH assay kit | Biovision | K654-100 | |
G6PDH assay kit | Sigma | MAK015-1KT | |
G-6-P assay kit | Biovision | K657-100 | |
ribitol | Sigma | A5502 | |
methanol | Sigma | 650471 | |
chloroform | Sigma | 472476 | |
vacuum concentrator | Thermor Scientific | SC250EXP | |
methoxyamine hydrochloride | Sigma | 226904 | |
N-Methyl-N-(trimethylsilyl) trifluoroacetamide | Sigma | 394866 |