Summary

听觉皮层在成年猫用高场磁共振成像功能成像

Published: February 19, 2014
doi:

Summary

听觉系统在哺乳动物中的功能研究传统上使用诸如电生理记录空间为重点的技术进行的。以下协议描述可视化诱发血流动力学行为的大型图案的猫听觉皮层使用功能性磁共振成像的方法。

Abstract

感觉处理的哺乳动物听觉系统现有的知识主要来自于各种动物模型的电生理研究,包括猴子,白鼬,蝙蝠,老鼠和猫。为了画听觉功能的人类和动物模型之间合适的相似之处,它可以建立人体功能成像研究和动物的电生理研究之间的桥梁是非常重要的。功能磁共振成像(fMRI)是测量整个大脑皮层的不同区域广泛血流动力学活动模式的建立,微创的方法。这种技术被广泛用于探测在人类大脑感觉功能,是在连接听觉处理的研究在人类和动物的有用工具,并已成功地用于研究在猴和啮齿动物的听觉功能。以下协议描述了一个实验过程中麻醉的成人调查听觉功能猫用功能磁共振成像测量听觉皮层刺激诱发血流动力学改变。这种方法有利于在不同的车型听觉功能的血流动力学反应从而导致更好地理解哺乳动物的听觉皮层的种类无关的特性比较。

Introduction

听觉处理哺乳动物目前的了解主要来自侵入性电生理研究在猴子1-5,6-10鼬,蝙蝠11-14,15-19啮齿动物,和猫20-24。电生理技术通常利用细胞外微电极周围的电极尖端的神经组织的一个小的区域之内记录的单个和多个神经元的活动。建立功能成像方法,如光学成像和功能磁共振成像(fMRI)技术,通过提供同步驱动的活动的宏观角度来看整个大脑的多个空间上不同的区域作为有益的补充到细胞外记录。内在信号光学成像有利于通过测量表面组织的反射特性与活动相关的大脑的变化诱发的活动可视化,同时利用功能磁共振成像的血氧水平依赖(BOLD)对比来测量大脑区域的刺激,诱发血流动力学改变一个特定的任务时被激活。光学成像需要的皮质表面的直接接触措施表面组织反射率有关系的刺激诱 ​​发的活动25的变化。相比较而言,功能磁共振成像是无创和利用的缺氧血顺磁特性,以在一个完整的颅骨测量两个皮质表面26-28和沟系27,29诱发活性。在非人灵长类视觉皮层30和人类听觉皮层31的BOLD信号和神经活动之间的强相关性验证的功能磁共振成像研究感觉功能的有用工具。由于磁共振成像已被广泛用于研究听觉通路如tonotopic组织32-36,听觉功能37的不对称,皮层激活的模式,识别皮层区域38,声音效果的特征在听反应特性的39,40,和大胆的响应时间当然29,41在人,猴和大鼠模型,合适的功能成像协议,研究听觉功能在猫的发展将提供一个有益的补充的强度特性该功能成像文学。而功能磁共振成像也被用来探索在被麻醉的猫26-28,42视觉皮层的各种功能方面,一些研究已经使用这种技术来检查感觉处理在猫听觉皮层。本议定书的目的是建立利用fMRI来量化函数在麻醉猫的听觉皮层的有效方法。在这个手稿中概述的程序已经实验成功地用来形容在成年猫的听觉皮层43的BOLD响应时间过程的功能。

Protocol

下面的过程可以应用到任何成像实验,其中麻醉猫的使用。这是特别需要的听觉实验(步骤1.1-1.7,2.8,4.1)的步骤可以被修改以适应其它感官刺激协议。 所有实验程序收到来自动物使用小组委员会大学动物保护协会在西安大略大学的批准,随后由加拿大动物保护协会(CCAC)44规定的准则。概述的实验需要约150分钟从动物准备恢复。实验的时间过程示于图1。</str…

Representative Results

代表功能的数据是在一个7T水平孔扫描仪获取并使用统计参数映射工具箱在MATLAB中进行分析。在猫中使用所描述的实验方案43健壮皮质的血液动力学反应,听觉刺激一直被观察到。 图6示出了BOLD激活在2只动物在响应于一个30秒的宽带噪声刺激在一个块中的设计呈现。宽带噪声与基线(无刺激)的T型统计图2中的图像切片平面的对比揭示了在听觉皮层( 图6a和6d…

Discussion

在设计的功能磁共振成像实验听觉功能的麻醉动物模型中,以下问题应慎重考虑:麻醉(i)于皮层反应的影响,背景扫描仪噪音(II)的影响,及(iii)优化实验过程的数据采集阶段。

而麻醉制剂生产提供的镇静长时间和功能成像会议期间尽量减少潜在的头部运动的重要优势,麻醉是众所周知的影响皮质的血流动力学。在此协议中描述的麻醉药电(氯胺酮)是常用和猫分别?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

作者要感谢凯尔吉尔伯特,谁设计的定制射频线圈,和凯文·巴克,是谁设计的MRI兼容雪橇的贡献。这项工作是由健康研究加拿大学院(CIHR),加拿大自然科学和(NSERC)工程研究理事会,加拿大创新基金会(CFI)的支持。

Materials

Material
Atropine sulphate injection 0.5 mg/mL Rafter 8 Products
Acepromazine 5 mg/mL Vetoquinol Inc.
Ketamine hydrochloride 100 mg/mL Bimeda-MTC
Dexmedetomidine hydrochloride (Dexdomitor 0.5 mg/mL) Orion Pharma
Isoflurane 99.9% Abbott Laboratories
Lidocaine (Xylocaine endotracheal 10 mg/metered dose) Astra Zeneca
Lubricating opthalmic ointment (Refresh Lacri Lube) Allergan Inc.
Saline 0.95%
IV Catheter 22g (wings)
IV Extension Set Codan US Corp. BC 269
IV Administration Set 10 drips/mL
Endotracheal tube 4.0
Heating pads (Snuggle Safe) Lenric C21 Ltd.
Syringe 60 mL
Equipment
External sound card Roland Corporation Cakewalk UA-25EX
Stereo power amplifier Pyle Audio Inc. Pyle Pro PCAU11
MRI-compatible insert earphone system Sensimetric Corporation Model S14
Foam ear tips for insert earphones E-A-R Auditory Systems Earlink 3B
End-tidal CO2 monitor Nellcor  N-85
MRI-compatible pulse oximeter Nonin Medical Inc. Model 7500
Syringe pump Harvard Apparatus 70-2208

Referencias

  1. Kaas, J. H., Hackett, T. A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. U.S.A. 97, 11793-11799 (2000).
  2. Kusmierek, P., Rauschecker, J. P. Functional Specialization of Medial Auditory Belt Cortex inthe Alert Rhesus Monkey. J. Neurophysiol. 102, 1606-1622 (2009).
  3. Recanzone, G. H., Guard, D. C., Phan, M. L. Frequency and Intensity Response Properties of Single Neurons in the Auditory Cortex of the Behaving Macaque Monkey. J. Neurophysiol. 83, 2315-2331 (2000).
  4. Godey, B., Atencio, C. A., Bonham, B. H., Schreiner, C. E., Cheung, S. W. Functional organization of squirrel monkey primary auditory cortex: Responses to frequency-modulation sweeps. J. Neurophysiol. 94, 1299-1311 (2005).
  5. Tian, B., Rauschecker, J. P. Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J. Neurophysiol. 92, 2993-3013 (2004).
  6. Mrsic-Flogel, T. D., Versnel, H., King, A. J. Development of contralateral and ipsilateral frequency representations in ferret primary auditory cortex. Eur. J. Neurosci. 23, 780-792 (2006).
  7. Elhilali, M., Fritz, J. B., Chi, T. -. S., Shamma, S. A. Auditory Cortical Receptive Fields: Stable Entities with Plastic Abilities. J. Neurosci. 27, 10372-10382 (2007).
  8. Shamma, S. A., Fleshman, J. W., Wiser, P. R., Versnel, H. Organization of Response Areas in Ferret Primary Auditory Cortex. J. Neurophysiol. 69, 367-383 (1993).
  9. Kowalski, N., Versnel, H., Shamma, S. A. Comparison of Responses in the Anterior and Primary Auditory Fields of the Ferret Cortex. J. Neurophysiol. 73, 1513-1523 (1995).
  10. Nelken, I., Versnel, H. Responses to linear and logarithmic frequency-modulated sweeps in ferret primary auditory cortex. Eur. J. Neurosci. 12, 549-562 (2000).
  11. Shannon-Hartman, S., Wong, D., Maekawa, M. Processing Of Pure-Tone And FM Stimuli In The Auditory Cortex Of The FM Bat, Myotis lucifugus. Hearing Res. 61, 179-188 (1992).
  12. Razak, K. A., Fuzessery, Z. M. Neural Mechanisms Underlying Sensitivity for the Rate and Direction of Frequency-Modulated Sweeps in the Auditory Cortex of the Pallid. J. Neurophysiol. 96, 1303-1319 (2006).
  13. Razak, K. A., Fuzessery, Z. M. GABA Shapes Selectivity for the Rate and Direction of Frequency-Modulated Sweeps in the Auditory Cortex. J. Neurophysiol. 102, 1366-1378 (2009).
  14. Suga, N. Functional Properties of Auditory Neurones in the Cortex of Echo-Locating Bats. J. Physiol. 181, 671-700 (1965).
  15. Harrison, R. V., Kakigi, A., Hirakawa, H., Harel, N., Mount, R. J. Tonotopic mapping in auditory cortex of chinchilla. Hearing Res. 100, 157-163 (1996).
  16. Benson, D. A., Teas, D. C. Single Unit Study of Binaural Interaction in the Auditory Cortex of the Chinchilla. Brain Res. 103, 313-338 (1976).
  17. Ricketts, C., Mendelson, J. R., Anand, B., English, R. Responses to time-varying stimuli in rat auditory cortex. Hearing Res. 123, 27-30 (1998).
  18. Gaese, B. H., Ostwald, J. Temporal Coding of Amplitude and Frequency Modulation in the Rat Auditory Cortex. European J. Neurosci. 7, 438-450 (1995).
  19. Hage, S. R., Ehret, G. Mapping responses to frequency sweeps and tones in the inferior colliculus of house mice. Eur. J. Neurosci. 18, 2301-2312 (2003).
  20. Merzenich, M. M., Knight, P. L., Roth, G. L. Representation of Cochlea Within Primary Auditory Cortex in the Cat. J. Neurophysiol. 38, 231-249 (1975).
  21. Knight, P. L. Representation of the Cochlea within the Anterior Auditory Field (AAF) of the Cat. Brain Res. 130, 447-467 (1977).
  22. Sutter, M. L., Schreiner, C. E., McLean, M., O’Connor, K. N., Loftus, W. C. Organization of Inhibitory Frequency Receptive Fields in Cat Primary Auditory Cortex. J. Neurophysiol. 82, 2358-2371 (1999).
  23. Whitfield, I. C., Evans, E. F. Responses of Auditory Cortical Neurons to Stimuli of Changing Frequency. J. Neurophysiol. 28, 655-672 (1965).
  24. Mendelson, J. R., Cynader, M. S. Sensitivity of cat primary auditory cortex (AI) neurons to the direction and rate of frequency modulation. Brain Res. 327, 331-335 (1985).
  25. Pouratian, N., Toga, A. W., Toga, A. W., Mazziotta, J. C. . Brain Mapping: The Methods. , 97-140 (2002).
  26. Harel, N., Lee, S. P., Nagaoka, T., Kim, D. S., Kim, S. G. Origin of negative blood oxygenation level-dependent fMRI signals. J. Cereb. Blood Flow Metab. 22, 908-917 (2002).
  27. Olman, C., Ronen, I., Ugurbil, K., Kim, D. S. Retinotopic mapping in cat visual cortex using high-field functional magnetic resonance imaging. J. Neurosci. Methods. 131, 161-170 (2003).
  28. Kim, D. S., Duong, T. Q., Kim, S. G. High-resolution mapping of iso-orientation columns by fMRI. Nat. Neurosci. 3, 164-169 (2000).
  29. Belin, P., Zatorre, R. J., Hoge, R., Evans, A. C., Pike, B. Event-related fMRI of the auditory cortex. NeuroImage. 10, 417-429 (1999).
  30. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 412, 150-157 (2001).
  31. Mukamel, R., et al. Coupling between neuronal firing, field potentials, and fMR1 in human auditory cortex. Science. 309, 951-954 (2005).
  32. Bilecen, D., Scheffler, K., Schmid, N., Tschopp, K., Seelig, J. Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI. Hearing Res. 126, 19-27 (1998).
  33. Talavage, T. M., Ledden, P. J., Benson, R. R., Rosen, B. R., Melcher, J. R. Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hearing Res. 150, 225-244 (2000).
  34. Talavage, T. M., et al. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J. Neurophysiol. 91, 1282-1296 (2004).
  35. Wessinger, C. M., Buonocore, M. H., Kussmaul, C. L., Mangun, G. R. Tonotopy in human auditory cortex examined with functional magnetic resonance imaging. Human Brain Map. 5, 18-25 (1997).
  36. Cheung, M. M., et al. BOLD fMRI investigation of the rat auditory pathway and tonotopic organization. NeuroImage. 60, 1205-1211 (2012).
  37. Langers, D. R. M., van Dijk, P., Backes, W. H. Lateralization connectivity and plasticity in the human central auditory system. NeuroImage. 28, 490-499 (2005).
  38. Petkov, C. I., Kayser, C., Augath, M., Logothetis, N. K. Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biol. 4, 1213-1226 (2006).
  39. Tanji, K., et al. Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey. NeuroImage. 49, 150-157 (2010).
  40. Zhang, J. W., et al. Functional magnetic resonance imaging of sound pressure level encoding in the rat central auditory system. NeuroImage. 65, 119-126 (2013).
  41. Baumann, S., et al. Characterisation of the BOLD response time course at different levels of the auditory pathway in non-human primates. NeuroImage. 50, 1099-1108 (2010).
  42. Jezzard, P., Rauschecker, J. P., Malonek, D. An in vivo model for functional MRI in cat visual cortex. Magn. Reson. Med. 38, 699-705 (1997).
  43. Brown, T. A., et al. Characterisation of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI. NeuroImage. 64, 458-465 (2013).
  44. Olfert, E. D., Cross, B. M., McWilliam, A. A. . Canadian Council on Animal Care. 1, (1993).
  45. Franceschini, M. A., et al. The effect of different anesthetics on neurovascular coupling. NeuroImage. 51, 1367-1377 (2010).
  46. Heil, P., Irvine, D. R. F. Functional specialization in auditory cortex: Responses to frequency-modulated stimuli in the cat’s posterior auditory field. J. Neurophysiol. 79, 3041-3059 (1998).
  47. Norena, A. J., Gourevitch, B., Pienkowski, M., Shaw, G., Eggermont, J. J. Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex. J. Neurosci. 28, 8885-8896 (2008).
  48. Pienkowski, M., Eggermont, J. J. Long-term, partially-reversible reorganization of frequency tuning in mature cat primary auditory cortex can be induced by passive exposure to moderate-level sounds. Hearing Res. 257, 24-40 (2009).
  49. Zurita, P., Villa, A. E. P., de Ribaupierre, Y., de Ribaupierre, F., Rouiller, E. M. Changes of single unit activity in the cat auditory thalamus and cortex associated with different anesthetic conditions. Neurosci. Res. 19, 303-316 (1994).
  50. Crosby, G., Crane, A. M., Sokoloff, L. Local changes in cerebral glucose-utilization during ketamine anesthesia. Anesthesiology. 56, 437-443 (1982).
  51. Zhao, F., Jin, T., Wang, P., Kim, S. -. G. Isoflurane anesthesia effect in functional imaging studies. NeuroImage. 38, 3-4 (2007).
  52. Cheung, S. W., et al. Auditory cortical neuron response differences under isoflurane versus pentobarbital anesthesia. Hearing Res. 156, 115-127 (2001).
  53. Dueck, M. H., et al. Propofol attenuates responses of the auditory cortex to acoustic stimulation in a dose-dependent manner: A FMRI study. Acta Anaesthesiol. Scand. 49, 784-791 (2005).
  54. Seifritz, E., et al. Spatiotemporal pattern of neural processing in the human auditory cortex. Science. 297, 1706-1708 (2002).
  55. Hall, D. A., et al. 34;Sparse" temporal sampling in auditory fMRI. Human Brain Map. 7, 213-223 (1999).
  56. Backes, W. H., van Dijk, P. Simultaneous sampling of event-related BOLD responses in auditory cortex and brainstem. Magn. Reson. Med. 47, 90-96 (2002).
  57. Grubb, T., Greene, S. A. . In Veterinary Anesthesia and Pain Management Secrets. , 121-126 (2002).
check_url/es/50872?article_type=t

Play Video

Citar este artículo
Brown, T. A., Gati, J. S., Hughes, S. M., Nixon, P. L., Menon, R. S., Lomber, S. G. Functional Imaging of Auditory Cortex in Adult Cats using High-field fMRI. J. Vis. Exp. (84), e50872, doi:10.3791/50872 (2014).

View Video