Summary

प्राथमिक मानव टी कोशिकाओं की piggyBac Transposon सिस्टम संशोधन

Published: November 05, 2012
doi:

Summary

हम आनुवंशिक रूप से एक गैर वायरल का उपयोग transgene साथ प्राथमिक मानव टी कोशिकाओं को संशोधित करने के लिए एक विधि का वर्णन<em> PiggyBac</em> Transposon प्रणाली. टी कोशिकाओं का उपयोग करने के लिए संशोधित<em> PiggyBac</em> Transposon प्रणाली प्रदर्शन स्थिर transgene अभिव्यक्ति.

Abstract

The piggyBac transposon system is naturally active, originally derived from the cabbage looper moth1,2. This non-viral system is plasmid based, most commonly utilizing two plasmids with one expressing the piggyBac transposase enzyme and a transposon plasmid harboring the gene(s) of interest between inverted repeat elements which are required for gene transfer activity. PiggyBac mediates gene transfer through a “cut and paste” mechanism whereby the transposase integrates the transposon segment into the genome of the target cell(s) of interest. PiggyBac has demonstrated efficient gene delivery activity in a wide variety of insect1,2, mammalian3-5, and human cells6 including primary human T cells7,8. Recently, a hyperactive piggyBac transposase was generated improving gene transfer efficiency9,10.

Human T lymphocytes are of clinical interest for adoptive immunotherapy of cancer11. Of note, the first clinical trial involving transposon modification of human T cells using the Sleeping beauty transposon system has been approved12. We have previously evaluated the utility of piggyBac as a non-viral methodology for genetic modification of human T cells. We found piggyBac to be efficient in genetic modification of human T cells with a reporter gene and a non-immunogenic inducible suicide gene7. Analysis of genomic integration sites revealed a lack of preference for integration into or near known proto-oncogenes13. We used piggyBac to gene-modify cytotoxic T lymphocytes to carry a chimeric antigen receptor directed against the tumor antigen HER2, and found that gene-modified T cells mediated targeted killing of HER2-positive tumor cells in vitro and in vivo in an orthotopic mouse model14. We have also used piggyBac to generate human T cells resistant to rapamycin, which should be useful in cancer therapies where rapamycin is utilized15.

Herein, we describe a method for using piggyBac to genetically modify primary human T cells. This includes isolation of peripheral blood mononuclear cells (PBMCs) from human blood followed by culture, gene modification, and activation of T cells. For the purpose of this report, T cells were modified with a reporter gene (eGFP) for analysis and quantification of gene expression by flow cytometry.

PiggyBac can be used to modify human T cells with a variety of genes of interest. Although we have used piggyBac to direct T cells to tumor antigens14, we have also used piggyBac to add an inducible safety switch in order to eliminate gene modified cells if needed7. The large cargo capacity of piggyBac has also enabled gene transfer of a large rapamycin resistant mTOR molecule (15 kb)15. Therefore, we present a non-viral methodology for stable gene-modification of primary human T cells for a wide variety of purposes.

Protocol

0 दिन 1. PBMCs मानव रक्त से अलगाव ताजा मानव ना हेपरिन vacutainer ट्यूब में venipuncture का उपयोग करते हुए रक्त के 20 मिलीग्राम ले लीजिए. मिक्स रक्त और उन्नत 1:01 में १,६४० RPMI अनुपात (v / v). एक 50 मिलीलीटर अपकेंद्र?…

Representative Results

एक आनुवंशिक रूप से एक रिपोर्टर जीन (EGFP) के साथ मानव टी lymphocytes को संशोधित करने में कदम प्रदर्शन योजनाबद्ध चित्रा 1 में दिखाया गया है. इन plasmids लेखकों से अनुरोध पर उपलब्ध हैं. आनुवंशिक रूप से संशोधित एक रिप…

Discussion

यहाँ बताया विधि प्राथमिक मानव टी lymphocytes के स्थिर transgene संशोधन के लिए सक्षम बनाता है. हम पहले piggyBac transposon प्रणाली के उपयोग का परीक्षण किया है के लिए टी कोशिकाओं को संशोधित करने के लिए एक संवाददाता जीन (4 सप्ताह…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

एसएस भाग में ग्रैड TBMM कार्यक्रम के माध्यम से प्रशिक्षण अनुदान में HHMI मेड द्वारा समर्थित है. MHW भाग में दिग्गजों मामलों के विभाग से एक कैरियर विकास पुरस्कार और डॉ. और श्रीमती हेरोल्ड एम. Selzman की उदार सहायता के द्वारा समर्थित है. यह काम भी NIH लिंफोमा बीजाणु अनुदान P50CA126752 और NIH DK093660 R01 द्वारा भाग में समर्थित किया गया था.

Materials

Name of the reagent Company Catalogue number Comments (optional)
Lympholyte Cedarlane CL5015  
Advanced RPMI 1,640 LifeTechnologies 12633020  
Hyclone Fetal Bovine Serum Fisher Scientific SH3008803  
GlutaMAX-I Supplement LifeTechnologies 35050-061  
Human IL-15 Recombinant Protein eBioscience 14-8159  
EndoFree Plasmid Maxi Kit Qiagen 12362  
Amaxa Nucleofector Lonza AAD-1001S  
Human T Cell Nucleofector Kit Lonza VPA-1002  
CD8-APC Southern Biotech 9536-11  
Anti-Human CD3 eBioscience 16-0037-81  
Anti-Human CD28 BD Pharmingen 555725  
24 Well Tissue Culture Treated Plate BD Falcon 353047  
24 Well Non Tissue Culture Treated Plate BD Falcon 351147  
      Complete T cell media composition
1x Advanced RPMI 1,640
5% Heat Inactivated Fetal Bovine Serum
2 mM GlutamaxIM-I

Referencias

  1. Cary, L. C. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology. 172 (1), 156 (1989).
  2. Fraser, M. J. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology. 211 (2), 397 (1995).
  3. Ding, S. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 122 (3), 473 (2005).
  4. Saridey, S. K. PiggyBac transposon-based inducible gene expression in vivo after somatic cell gene transfer. Mol. Ther. 17 (12), 2115 (2009).
  5. Nakanishi, H. piggyBac transposon-mediated long-term gene expression in mice. Mol. Ther. 18 (4), 707 (2010).
  6. Wilson, M. H., Coates, C. J., George, A. L. PiggyBac Transposon-mediated Gene Transfer in Human Cells. Mol. Ther. 15 (1), 139 (2007).
  7. Nakazawa, Y. Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes. J. Immunother. 32 (8), 826 (2009).
  8. Raja Manuri, P. V. piggyBac transposon/transposase system to generate CD19-specific T cells for treatment of B-lineage malignancies. Hum. Gene Ther. 21 (4), 427 (2010).
  9. Doherty, J. E. Hyperactive piggyBac gene transfer in human cells and in vivo. Hum. Gene Ther. , (2011).
  10. Yusa, K. A hyperactive piggyBac transposase for mammalian applications. Proc. Natl. Acad. Sci. U.S.A. 108 (4), 1531 (2011).
  11. Bonini, C. Genetic modification of T cells. Biol. Blood Marrow Transplant. 17, S15-S20 (2011).
  12. Hackett, P. B., Largaespada, D. A., Cooper, L. J. A transposon and transposase system for human application. Mol. Ther. 18 (4), 1531 (2010).
  13. Galvan, D. L. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J. Immunother. 32 (8), 837 (2009).
  14. Nakazawa, Y. PiggyBac-Mediated Cancer Immunotherapy Using EBV-Specific Cytotoxic T-Cells Expressing HER2-Specific Chimeric Antigen Receptor. Mol. Ther. 19 (12), 2133 (2011).
  15. Huye, L. E. Combining mTor Inhibitors With Rapamycin-resistant T Cells: A Two-pronged Approach to Tumor Elimination. Mol. Ther. 19 (12), 2239 (2011).
  16. Vera, J. F. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J. Immunother. 33 (3), 305 (2010).
  17. Kahlig, K. M. Multiplexed transposon-mediated stable gene transfer in human cells. Proc. Natl. Acad. Sci. U.S.A. 107 (4), 1343 (2010).

Play Video

Citar este artículo
Saha, S., Nakazawa, Y., Huye, L. E., Doherty, J. E., Galvan, D. L., Rooney, C. M., Wilson, M. H. piggyBac Transposon System Modification of Primary Human T Cells. J. Vis. Exp. (69), e4235, doi:10.3791/4235 (2012).

View Video