Here we use a human LentiPlex pooled library and traditional sequencing methods to identify gene targets promoting cell survival. We demonstrate how to set up and deconvolute a LentiPlex screen and validate the results.
RNA interference (RNAi) is an intrinsic cellular mechanism for the regulation of gene expression. Harnessing the innate power of this system enables us to knockdown gene expression levels in loss of gene function studies.
There are two main methods for performing RNAi. The first is the use of small interfering RNAs (siRNAs) that are chemically synthesized, and the second utilizes short-hairpin RNAs (shRNAs) encoded within plasmids 1. The latter can be transfected into cells directly or packaged into replication incompetent lentiviral particles. The main advantages of using lentiviral shRNAs is the ease of introduction into a wide variety of cell types, their ability to stably integrate into the genome for long term gene knockdown and selection, and their efficacy in conducting high-throughput loss of function screens. To facilitate this we have created the LentiPlex pooled shRNA library.
The MISSION LentiPlex Human shRNA Pooled Library is a genome-wide lentiviral pool produced using a proprietary process. The library consists of over 75,000 shRNA constructs from the TRC collection targeting 15,000+ human genes 2. Each library is tested for shRNA representation before product release to ensure robust library coverage. The library is provided in a ready-to-use lentiviral format at titers of at least 5 x 108 TU/ml via p24 assay and is pre-divided into ten subpools of approximately 8,000 shRNA constructs each. Amplification and sequencing primers are also provided for downstream target identification.
Previous studies established a synergistic antitumor activity of TRAIL when combined with Paclitaxel in A549 cells, a human lung carcinoma cell line 3, 4. In this study we demonstrate the application of a pooled LentiPlex shRNA library to rapidly conduct a positive selection screen for genes involved in the cytotoxicity of A549 cells when exposed to TRAIL and Paclitaxel. One barrier often encountered with high-throughput screens is the cost and difficulty in deconvolution; we also detail a cost-effective polyclonal approach utilizing traditional sequencing.
LentiPlex Pooled Screen Setup
To identify shRNA sequences of interest, it is critical to set up the screen such that the majority of cells receive only one shRNA construct. By using a low MOI (multiplicity of infection), the probability of multiple integrants per cell is greatly decreased. However, transduction efficiencies, and therefore desired MOIs, depend strongly on the target cell type. Therefore, it is imperative that determination of the optimal MOI is carried out before starting the screen in a new cell type.
1. Transduction Of Target Cells with the Mission LentiPlex Pooled shRNA Library
2. Treat plated cells with therapeutic component/reagent
3. Deconvolution from a polyclonal cell population
4. Target Identification and Validation
5. Representative Results
An example of a LentiPlex pooled screen workflow is detailed in Figure 1. Transduced cells that proliferated in the presence of TRAIL and Paclitaxel were allowed to expand until flasks were confluent. Genomic DNA was harvested and subjected to the PCR amplification and cloning as illustrated in Figure 1 A, before being submitted for sequencing and shRNA identification as described in Figure 1 C. 250 clones were sequenced, of these 25 were represented by multiple clones and the remaining 225 were represented by only 1 clone and were not pursued at this time.
As shown in Figure 2, several candidate genes including TBX3, PPP2CA, and AKT2 were represented by multiple clones. The T-box transcription factor, TBX3 appeared in a total of four clones and has been implicated in tumor migration5. PPP2CA downregulation has been demonstrated to maintain the growth of LNCaP cells cultured in androgen deficient conditions by relieving the androgen-deprivation-induced cell-cycle arrest and preventing apoptosis 6. AKT2 is a RAC-beta serine/threonine-protein kinase and putative oncogene demonstrated to play several roles in cancer development 7, 8.
*Final concentration of Mg2+ in solution will be 3 mM; 1.5 mM is contributed from the Taq ReadyMix and 1.5 mM from the Magnesium chloride solution.
Table 1. Lentiplex PCR Reaction Conditions
Table 2. Lentiplex PCR Amplification Program
Figure 1. (A) LentiPlex pooled screen, (B) Polyclonal deconvolution workflow, and (C) identification of shRNA targets.
A. LentiPlex pooled screen. First, Seed cells, then add shRNA subpools, (10 pools in total, each performed in triplicate, for 30 dishes total). Next, treat with therapeutic component/reagent (in our case, TRAIL and Paclitaxel, respectively). Then, reseed surviving cells in flasks and allow to expand. Harvest heterogeneous population of cells from each subpool and isolate genomic DNA.
B. Polyclonal deconvolution. Perform PCR to amplify DNA containing the shRNA insert. The PCR product is uniform in size, but polyclonal in sequence since the template gDNA was also polyclonal. PCR product is cloned into the vector and then transformed into competent bacteria.
C. Identification of shRNA targets. Individual colonies are isolated and plasmid DNA is extracted. Each clone contains the cloning vector with one individual PCR fragment. Plasmid DNA is digested to confirm the presence of the insert and sequenced. The shRNA insert is identified using the LentiPlex shRNA Sequence Search database.
Figure 2. Identified Candidate Genes. 25 candidate genes were identified that had multiple hits. 225 candidate genes had only 1 hit and were not pursued. Please see Supplementary Table 1 for a breakdown of the individual clones per candidate gene.
Supplementary Table 1. Individual TRC Library clones Identified From Polyclonal Sequencing Gene ID Hits Detected Clones.
In this study, we present a genome-wide screen to identify genes involved in cytotoxicity of A549 cells following paclitaxel/TRAIL treatment. The use of a pooled approach in a genome-wide screen reduces the time, cost, and equipment investment normally associated with conventional arrayed screens. Critical to the success of the screen are optimization experiments performed beforehand. Transduction conditions and MOI must be empirically determined.
The selection method should allow for robust selection of cells displaying the desired phenotype (e.g., survival, surface protein expression, etc). Optimization of these parameters will reduce the number of false positives detected.
Here, gDNA was harvested from the bulk population of selected cells and then TOPO cloned to identify individual shRNA inserts. One possible improvement for this experiment would have been to select for live cells using FACS to ensure that only live cells are collected. The identified targets will be validated by transduction with target-specific shRNAs in a screening assay. True hits will display the phenotype in a majority of wells.
The LentiPlex Pooled Library is flexible in its application. It is compatible with a wide array of downstream applications and may be used with either positive or negative selection strategies. Depending on the screening conditions, deconvolution of the shRNA inserts is accomplished via PCR/cloning, microarray, or next-generation sequencing 9, 10.While the power and speed of these techniques to deconvolute RNAi screens is well established, one concern with microarray and next-generation sequencing methods is the availability of bioinformatics resources and knowledge needed to correctly analyze and interpret experimental results. The costs associated with these techniques can often times be a barrier to the undertaking of genome wide screens. A PCR/cloning based approach, while not as powerful as microarrays and next-generation sequencing is an effective and lower cost alternative.
Agilent now offers a custom array based on the TRC shRNA library to further aid in LentiPlex screens. These options allow researchers to use LentiPlex to study a diverse range of cellular functions.
The authors have nothing to disclose.
MISSION is a registered trademark of Sigma-Aldrich Biotechnology L.P.
LentiPlex is a trademark of Sigma-Aldrich Biotechnology L.P.
Name of the reagent | Company | Catalog Number |
LentiPlex Pooled Array | Sigma-Aldrich | SHPH01 |
A549 Cells | ATCC | CCL-185 |
TRAIL | Sigma-Aldrich | T5694 |
Paclitaxel | Sigma-Aldrich | T7402 |
Topo TA Cloning Kit | Invitrogen | K4575-01 |
JumpStart Taq ReadyMix | Sigma-Aldrich | P2893 |
GenElute Plasmid Miniprep kit | Sigma-Aldrich | PLN70 |
EcoR1 | New England Biolabs | R0101 |
hexadimethrine bromide | Sigma-Aldrich | H9268 |