A precise murine model for acute kidney injury (AKI) due to ischemia is an important tool to investigate acute kidney injury and possibly find therapeutic tools to treat renal injury. The hanging weight system offers a tool for immediate and reliable renal artery occlusion and reperfusion without causing renal congestion.
In hospitalized patients, over 50% of cases of acute kidney injury (AKI) are caused by renal ischemia 1-3. A recent study of hospitalized patients revealed that only a mild increase in serum creatinine levels (0.3 to 0.4 mg/dl) is associated with a 70% greater risk of death than in persons without any increase 1. Along these lines, surgical procedures requiring cross-clamping of the aorta and renal vessels are associated with a renal failure rates of up to 30% 4. Similarly, AKI after cardiac surgery occurs in over 10% of patients under normal circumstances and is associated with dramatic increases in mortality. AKI are also common complications after liver transplantation. At least 8-17% of patients end up requiring renal replacement therapy 5. Moreover, delayed graft function due to tubule cell injury during kidney transplantation is frequently related to ischemia-associated AKI 6. Moreover, AKI occurs in approximately 20% of patients suffering from sepsis 6.The occurrence of AKI is associated with dramatic increases of morbidity and mortality 1. Therapeutic approaches are very limited and the majority of interventional trials in AKI have failed in humans. Therefore, additional therapeutic modalities to prevent renal injury from ischemia are urgently needed 3, 7-9.
To elucidate mechanisms of renal injury due to ischemia and possible therapeutic strategies murine models are intensively required 7-13. Mouse models provide the possibility of utilizing different genetic models including gene-targeted mice and tissue specific gene-targeted mice (cre-flox system). However, murine renal ischemia is technically challenging and experimental details significantly influence results. We performed a systematic evaluation of a novel model for isolated renal artery occlusion in mice, which specifically avoids the use of clamping or suturing the renal pedicle 14. This model requires a nephrectomy of the right kidney since ischemia can be only performed in one kidney due to the experimental setting. In fact, by using a hanging-weight system, the renal artery is only instrumented once throughout the surgical procedure. In addition, no venous or urethral obstruction occurs with this technique. We could demonstrate time-dose-dependent and highly reproducible renal injury with ischemia by measuring serum creatinine. Moreover, when comparing this new model with conventional clamping of the whole pedicle, renal protection by ischemic preconditioning is more profound and more reliable. Therefore his new technique might be useful for other researchers who are working in the field of acute kidney injury.
General remarks. All operations should be performed under an upright dissecting microscope (Leica) and by using a surgical coagulator. The mice in the experimental groups should be matched in age and weight to ensure comparability of the results. Temperature, blood pressure, anesthesia and fluid administration should be stable and monitored during the experiment.
1. Anesthesia and surgery
2. Measurement of kidney injury
3. Representative Results:
Figure 1. Model of a hanging-weight system for renal ischemia: A hanging weight system has been established to induce renal ischemia of the left kidney. Therefore an 8.0 nylon suture was placed under the renal artery and at the end of each suture a small weight (1g) was attached. This experimental design allows reversible occlusion of the renal artery by applying and releasing the weight load.
In summary, the present study describes a novel technique for performing renal ischemia in a murine model using a hanging-weight system for renal artery occlusion. In fact, this study demonstrates highly reproducible injury, thus minimizing the variability associated with clamping of the renal pedicle.
The authors have nothing to disclose.
The present studies were supported by United States National Institutes of Health grant R01-HL092188, R01-DK083385 and R01HL098294, and Foundation for Anesthesia Education and Research (FAER) Grants to HKE, a FAER grant to JYD and a DFG (Deutsche Forschungsgemeinschaft) Research Fellowship (GR2121/1-1) to AG.
Name of the reagent | Company | Catalogue number | Comments |
---|---|---|---|
Sodium Pentobarbital | Vortech Pharmaceutical Ls, Ltd | V.P.L. 9372 | 4mg/mL in saline |
Suture, silk 4.0 | Harvard Apparatus | 517698 | |
Suture, Prolene 8.0 | Ethicon, USA | M8739 | reusable |
dissecting microscope | Leica | n/a | consider generous working distance |
Heating Table | Rt, Effenberger, Germany | n/a | only and single provider |
Surgical instruments | WPI, Dumont | a fine microvessel scissor |