Summary

小鼠手术腰交感神经切除术

Published: July 05, 2024
doi:

Summary

本手稿提出了一种通过手术从小鼠身上切除节后腰交感神经元的方案。该程序将促进旨在调查交感神经支配在远端组织靶标中的作用的大量研究。

Abstract

周围神经损伤很常见,只有 10% 的患者在受伤后实现了完全功能恢复。交感神经系统在维持身体稳态方面起着许多关键作用,但很少在周围神经损伤的背景下对其进行研究。目前尚不清楚外围远端靶标中节后交感神经元的功能范围。为了更好地探索外周靶点交感神经支配的作用,手术 “敲除” 模型提供了一种替代方法。虽然这可以通过化学方式实现,但节后交感神经元的化学破坏可以是非特异性的并且是剂量依赖性的。在小鼠中使用手术腰交感神经切除术,曾经被认为在小动物中“几乎不可行”,允许特异性靶向支配后肢的节后交感神经神经元。本手稿描述了如何通过手术切除小鼠的 L2-L5 腰交感神经节作为生存手术,从而可靠地减少后爪汗液反应和坐骨神经中交感神经轴突的数量。

Introduction

周围神经损伤 (PNI) 可导致远端组织靶区的运动、感觉和交感神经功能障碍,这些目标很少能完全恢复功能1。PNI 研究通常集中在运动和感觉再生上;然而,大鼠坐骨神经的近四分之一由无髓交感神经轴突组成2。然而,交感神经支配在外周组织中的作用尚不完全清楚3。交感神经系统在维持身体稳态、参与免疫调节、体温调节、血管张力、线粒体生物发生等方面起着重要作用 4,5,6,7,8,9,10,11 .当神经肌肉接头处的交感神经支配丧失时,尽管运动神经元神经支配维持,但仍观察到持续的肌肉无力和突触不稳定12。神经肌肉接头突触传递的这种交感神经调节已被证明会随着年龄的增长而下降13,14,这会导致肌肉减少症,定义为肌肉质量、力量和力量的年龄依赖性降低15。更好地了解外周组织交感神经支配的作用对于开发优化 PNI 和其他形式交感神经功能障碍患者功能结果的疗法是必要的。

交感神经切除术是一种强大的实验工具,可用于研究交感神经支配在远端靶组织中的作用。具体来说,去除 L2-L5 水平交感神经节会去除下肢的大部分交感神经支配,这对于对坐骨神经感兴趣的研究人员特别有用。

该协议详细介绍了作为生存手术从小鼠中去除 L2-L5 水平的节后交感神经神经元。该程序需要啮齿动物显微外科技能和熟悉小鼠解剖结构,并且如果有效执行,不会引起任何可见的表型差异。外科腰交感神经切除术已用于啮齿动物研究,在大鼠中比在小鼠中更多 16,17,18,19,20,21;但是,目前不存在描述该协议的详细协议。以前利用腰交感神经切除术的研究主要集中在交感神经支配在疼痛反应中的作用,在各种神经损伤模型中,交感神经支配通常会减轻疼痛反应。在小鼠中使用这种技术的研究较少22,可能是由于解剖标志的尺寸较小,因为人们认为使用手术交感神经切除术在小动物中“几乎不可行”23,24。微交感神经切除术形式的局部交感神经切除术也已用于啮齿动物模型,也主要在疼痛行为的背景下 25,26,27。与全腰交感神经切除术相比,微交感神经切除术采用背侧入路,通过该入路断开并切除通往特定脊神经的灰色支段,从而允许进行非常有针对性的交感神经切除术,从而避免更广泛的扩散副作用。

由于小鼠模型对于许多需要遗传操作的研究至关重要,因此该程序也将具有超越周围神经损伤的广泛应用。使用经腹入路,可以可靠地观察并从小鼠中切除腰交感神经节,没有明显的不良反应。尽管有化学破坏节后交感神经元的方案,例如使用 6-羟基多巴胺 (6-OHDA)23,24这种外科手术允许在解剖学上特异性靶向节后腰交感神经节。使用手术交感神经切除术还避免了与药理学方法相关的非特异性和剂量依赖性问题28,29

1967 年,通过施用 6-OHDA 使用化学交感神经切除术被描述为一种实现选择性破坏肾上腺素能神经末梢的简单方法,因为小动物的手术交感神经切除术不受欢迎23,24。6-OHDA 是一种儿茶酚胺能神经毒素,在帕金森病患者中内源性形成,其毒性来源于其形成自由基和抑制线粒体电子传递链的能力30,31。通过去甲肾上腺素摄取-1 转运机制,6-OHDA 能够在去甲肾上腺素能神经元内积累,例如节后交感神经神经元28。最终,神经元被 6-OHDA 破坏;然而,周围神经系统的末梢确实会再生,即使胺水平仍然降低,功能活性也会恢复。响应 6-OHDA 的不同器官也存在不同的剂量阈值,并且更高剂量的 6-OHDA 已被证明表现出更多的非特异性作用,将其神经毒性后果扩展到不含儿茶酚胺的神经元甚至非神经元细胞。除了去甲肾上腺素能神经元外,多巴胺能神经元也受 6-OHDA29 的影响,这使得化学交感神经切除术最终对节后交感神经神经元的特异性低于手术交感神经切除术。

因此,手术腰交感神经切除术能够针对性地消融下肢的交感神经支配,这可以与小鼠的各种实验技术和遗传操作相结合,以研究交感神经系统如何导致各种损伤和疾病状态。

Protocol

所有实验均已获得埃默里大学机构动物护理和使用委员会 (IACUC) 的批准(根据 IACUC 协议编号 PROTO201700371)。本研究使用了 4 只成年雌性野生型 C57BL/6J 小鼠,年龄为 14 周龄,体重在 16-21 g 之间。此处使用的试剂和设备的详细信息列在 材料表中。 1. 术前准备 高压灭菌手术工具:1 把锋利的剪刀、2 个细尖镊子、1 个针刀。 将加热垫加?…

Representative Results

该协议描述了从小鼠身上手术切除节后腰交感神经元。2 只小鼠接受腰交感神经切除术,2 只小鼠作为对照。为了实现成功的腰交感神经外科切除术,必须至少实现 L2 和 L3 双侧腰交感神经节的充分可视化,如图 1 所示。切除 L4 和 L5 神经节将实现下半身的完全交感神经去神经支配;然而,下神经节的可视化可能会受到泌尿生殖器官的阻碍。既往逆行追踪研究表明,L2-L5 神经节?…

Discussion

腰交感神经节是非常小的结构,位于许多关键的腹部器官和大血管后面。因此,此过程需要很高的精度和准确度。大部分困难在于术中识别交感神经节。建议学习者在尝试在活小鼠中尝试此过程之前,首先能够识别小鼠尸体中的神经节。在肠道改道后识别交感神经节时,通常需要进行故障排除。为了确保足够的可视化,降序号必须可见。腹腔外的肠道改道必须包括盲肠。此外,膀胱可能充盈和扩?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 NIH 国家神经疾病和中风研究所的支持,奖励编号为 K01NS124912,部分得到了 NIH 资助的埃默里性别差异专业中心U54AG062334和埃默里大学医学院医学科学家培训计划的发展赠款。感谢学士后 David Kim 对坐骨神经进行切片,感谢研究专家 HaoMin SiMa 为我们的立体显微镜 3D 打印手机支架,从而拍摄了视频。

Materials

5-0 absorable suture CP Medical 421A
5-0 nylon suture Med-Vet International MV-661
70% ethanol Sigma-Aldrich E7023-4L
Anesthesia Induction Chamber Kent Scientific VetFlo VetFlo-0530XS
Anesthesia Vaporizer Kent Scientific VetFlo 13-005-202
Betadine HealthyPets BET16OZ
C57BL/6J mice Jackson Laboratory #000664
Chicken anti-neurofilament-heavy Abcam ab72996
Cryostat Leica CM1850
Data Analysis Software Prism
Eye lubricant Refresh Refresh P.M.
Fine-tipped tweezers World Precision Instruments 500233
Fluorescent microscope Nikon Ti-E
Goat anti-chicken 488 Invitrogen A32931
Goat anti-rabbit 647 Invitrogen A21245
Heating pad Braintree Scientific 39DP
Image Analysis Software Fiji
Imaging Software Nikon NIS-Elements
Isoflurane Med-Vet International RXISO-250
Meloxicam Med-Vet International RXMELOXIDYL32
Needle driver Roboz Surgical Store RS-7894
Normal Goat Serum Abcam ab7481
Phox2bCre:tdTomato mutant mice Jackson Laboratory  #016223, #007914
Pilocarpine hydrochloride Sigma-Aldrich P6503
Rabbit anti-tyrosine hydroxylase Abcam ab112
Small straight scissors  Fine Science Tools 14084-09
Sterile cotton swabs 2×2 Dynarex 3252
Sterile cotton tipped applicators Dynarex 4301
Sterile drape Med-Vet International DR4042
Sterile saline solution Med-Vet International 1070988-BX
ThCre:mTmG mutant mice Mutant Mouse Resource and Research Centers strain #017262-UCD Jackson Laboratory, strain #007576
ThCre:tdTomato mutant mice European Mouse Mutant Archive strain #00254 Jackson Laboratory, strain #007914

Referenzen

  1. Scholz, T., et al. Peripheral nerve injuries: An international survey of current treatments and future perspectives. J Reconstr Microsurg. 25 (06), 339-344 (2009).
  2. Schmalbruch, H. Fiber composition of the rat sciatic nerve. Anat Rec. 215 (1), 71-81 (1986).
  3. Tian, T., Moore, A. M., Ghareeb, P. A., Boulis, N. M., Ward, P. J. A perspective on electrical stimulation and sympathetic regeneration in peripheral nerve injuries. Neurotrauma Rep. 5 (1), 172-180 (2024).
  4. Gagnon, D., Crandall, C. G. Sweating as a heat loss thermoeffector. Hand Clin Neurol. 156, 211-232 (2018).
  5. Grassi, G. Role of the sympathetic nervous system in human hypertension. J Hypertens. 16 (12), 1979-1987 (1998).
  6. Dibona, G. F. Sympathetic nervous system and the kidney in hypertension. Curr Opin Nephrol Hypertens. 11 (2), 197-200 (2002).
  7. Elenkov, I. J., Wilder, R. L., Chrousos, G. P., Vizi, E. S. The sympathetic nerve-An integrative interface between two supersystems: The brain and the immune system. Pharmacol Rev. 52 (4), 595-638 (2000).
  8. Besedovsky, H. O., Del Rey, A., Sorkin, E., Da Prada, M., Keller, H. Immunoregulation mediated by the sympathetic nervous system. Cell Immunol. 48 (2), 346-355 (1979).
  9. Straka, T., et al. Postnatal development and distribution of sympathetic innervation in mouse skeletal muscle. Int J Mol Sci. 19 (7), 1935 (2018).
  10. Geng, T., et al. Pgc-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol. 298 (3), C572-C579 (2010).
  11. Lin, J., Handschin, C., Spiegelman, B. M. Metabolic control through the pgc-1 family of transcription coactivators. Cell Metab. 1 (6), 361-370 (2005).
  12. Khan, M. M., et al. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proc Natl Acad Sci. 113 (3), 746-750 (2016).
  13. Delbono, O., Rodrigues, A. C. Z., Bonilla, H. J., Messi, M. L. The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing Res Rev. 67, 101305 (2021).
  14. Rodrigues, A. C. Z., et al. Heart and neural crest derivative 2-induced preservation of sympathetic neurons attenuates sarcopenia with aging. J Cachexia Sarcopenia Muscle. 12 (1), 91-108 (2021).
  15. Rosenberg, I. H. Summary comments. Am J Clin Nutr. 50 (5), 1231-1233 (1989).
  16. Murata, Y., Olmarker, K., Takahashi, I., Takahashi, K., Rydevik, B. Effects of lumbar sympathectomy on pain behavioral changes caused by nucleus pulposus-induced spinal nerve damage in rats. Eur Spine J. 15, 634-640 (2006).
  17. Xie, J., Park, S. K., Chung, K., Chung, J. M. The effect of lumbar sympathectomy in the spinal nerve ligation model of neuropathic pain. J Pain. 2 (5), 270-278 (2001).
  18. Lee, D. H., Katner, J., Iyengar, S., Lodge, D. The effect of lumbar sympathectomy on increased tactile sensitivity in spinal nerve ligated rats. Neurosci Lett. 298 (2), 99-102 (2001).
  19. Ringkamp, M., et al. Lumbar sympathectomy failed to reverse mechanical allodynia-and hyperalgesia-like behavior in rats with l5 spinal nerve injury. Pain. 79 (2-3), 143-153 (1999).
  20. Zhao, C., et al. Lumbar sympathectomy attenuates cold allodynia but not mechanical allodynia and hyperalgesia in rats with spared nerve injury. J Pain. 8 (12), 931-937 (2007).
  21. Zheng, Z. -. F., et al. Recovery of sympathetic nerve function after lumbar sympathectomy is slower in the hind limbs than in the torso. Neural Regen Res. 12 (7), 1177 (2017).
  22. Holmberg, K., Shi, T. -. J. S., Albers, K. M., Davis, B. M., Hökfelt, T. Effect of peripheral nerve lesion and lumbar sympathectomy on peptide regulation in dorsal root ganglia in the ngf-overexpressing mouse. Exp Neurol. 167 (2), 290-303 (2001).
  23. Thoenen, H., Tranzer, J. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 261, 271-288 (1968).
  24. Thoenen, H., Tranzer, J. P., Häusler, G. Chemical sympathectomy with 6-hydroxydopamine. New Aspects of Storage and Release Mechanisms of Catecholamines. , 130-143 (1970).
  25. Xie, W., et al. Localized sympathectomy reduces mechanical hypersensitivity by restoring normal immune homeostasis in rat models of inflammatory pain. J Neuroscience. 36 (33), 8712-8725 (2016).
  26. Zhu, X., Xie, W., Zhang, J., Strong, J. A., Zhang, J. -. M. Sympathectomy decreases pain behaviors and nerve regeneration by downregulating monocyte chemokine ccl2 in dorsal root ganglia in the rat tibial nerve crush model. Pain. 163 (1), e106-e120 (2022).
  27. Tonello, R., et al. Local sympathectomy promotes anti-inflammatory responses and relief of paclitaxel-induced mechanical and cold allodynia in mice. Anesthesiology. 132 (6), 1540-1553 (2020).
  28. Kostrzewa, R. M., Jacobowitz, D. M. Pharmacological actions of 6-hydroxydopamine. Pharmacol Rev. 26 (3), 199-288 (1974).
  29. Michel, P., Hefti, F. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neuroscience Res. 26 (4), 428-435 (1990).
  30. Andrew, R., et al. The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochemical Res. 18, 1175-1177 (1993).
  31. Glinka, Y., Gassen, M., Youdim, M. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl. 5, 55-66 (1997).
  32. Treuting, P. M., Dintzis, S. M., Montine, K. S. . Comparative anatomy and histology: A mouse, rat, and human atlas. , (2017).
  33. Hweidi, S. A., Lee, S., Wolf, P. Effect of sympathectomy on microvascular anastomosis in the rat. Microsurgery. 6 (2), 9-96 (1985).
  34. Navarro, X., Kennedy, W. R. Sweat gland reinnervation by sudomotor regeneration after different types of lesions and graft repairs. Exp Neurol. 104 (3), 229-234 (1989).
  35. Gaudet, A. D., Popovich, P. G., Ramer, M. S. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 8 (1), 1-13 (2011).
  36. Babetto, E., et al. Targeting nmnat1 to axons and synapses transforms its neuroprotective potency in vivo. J Neuroscience. 30 (40), 13291-13304 (2010).
  37. Brumovsky, P. R. Dorsal root ganglion neurons and tyrosine hydroxylase-an intriguing association with implications for sensation and pain. Pain. 157 (2), 314 (2016).
  38. Tian, T., Harris, A., Owyoung, J., Sima, H., Ward, P. J. Conditioning electrical stimulation fails to enhance sympathetic axon regeneration. bioRxiv. , (2023).
  39. Tian, T., Ward, P. J. The ThCre: Mtmg mouse has sparse expression in the sympathetic nervous system. bioRxiv. , (2023).
  40. Ohman-Gault, L., Huang, T., Krimm, R. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion. J Comparative Neurol. 525 (18), 3935-3950 (2017).
  41. Pattyn, A., Morin, X., Cremer, H., Goridis, C., Brunet, J. -. F. The homeobox gene phox2b is essential for the development of autonomic neural crest derivatives. Nature. 399 (6734), 366-370 (1999).
  42. François, M., et al. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Ann N Y Acad Sci. 1454 (1), 3-13 (2019).
This article has been published
Video Coming Soon
Keep me updated:

.

Diesen Artikel zitieren
Tian, T., Ward, P. J. Surgical Lumbar Sympathectomy in Mice. J. Vis. Exp. (209), e66821, doi:10.3791/66821 (2024).

View Video