Fluorescence lifetime imaging monitors, quantifies and distinguishes the aggregation tendencies of proteins in living, aging, and stressed C. elegans disease models.
Amyloid fibrils are associated with a number of neurodegenerative diseases such as Huntington's, Parkinson's, or Alzheimer's disease. These amyloid fibrils can sequester endogenous metastable proteins as well as components of the proteostasis network (PN) and thereby exacerbate protein misfolding in the cell. There are a limited number of tools available to assess the aggregation process of amyloid proteins within an animal. We present a protocol for fluorescence lifetime microscopy (FLIM) that allows monitoring as well as quantification of the amyloid fibrilization in specific cells, such as neurons, in a noninvasive manner and with the progression of aging and upon perturbation of the PN. FLIM is independent of the expression levels of the fluorophore and enables an analysis of the aggregation process without any further staining or bleaching. Fluorophores are quenched when they are in close vicinity of amyloid structures, which results in a decrease of the fluorescence lifetime. The quenching directly correlates with the aggregation of the amyloid protein. FLIM is a versatile technique that can be applied to compare the fibrilization process of different amyloid proteins, environmental stimuli, or genetic backgrounds in vivo in a non-invasive manner.
Protein aggregation occurs both in aging and disease. The pathways that lead to the formation and deposition of large amyloids or amorphous inclusions are difficult to follow and their kinetics are similarly challenging to unravel. Proteins can misfold due to intrinsic mutations within their coding sequences, as in the case of genetic diseases. Proteins also misfold because the proteostasis network (PN) that keeps them soluble and properly folded is impaired, as happens during aging. The PN includes molecular chaperones and degradation machineries and is responsible for the biogenesis, folding, trafficking, and degradation of proteins1.
C. elegans has emerged as a model to study aging and disease due to its short lifespan, isogenic nature, and ease of genetic manipulation. Several C. elegans transgenic strains that express human disease-causing proteins in vulnerable tissues have been created. Importantly, many of the strains containing aggregation-prone proteins recapitulate the hallmark of amyloid disorders, the formation of large inclusions. Thanks to C. elegans' transparent body, these aggregates can be visualized in vivo, noninvasively and nondestructively2. Generating any protein of interest (POI) in fusion with a fluorophore allows to investigate its locations, trafficking, interaction network, and general fate.
We present a protocol to monitor the aggregation of disease-causing proteins in living and aging C. elegans via fluorescence lifetime imaging microscopy (FLIM). FLIM is a powerful technique based on the lifetime of a fluorophore, rather than its emission spectra. The lifetime (tau, τ) is defined as the average time required by a photon to decay from its excited state back to its ground state. The lifetime of a given molecule is calculated with the time-domain technique of time-correlated single photon counting (TCSPC). In TCSPC-FLIM, the fluorescent decay function is obtained by exciting the fluorophore with short, high-frequency laser pulses and measuring the emitted photon's arrival times to a detector in respect to the pulses. When scanning a sample, a three-dimensional data array is created for each pixel: the array includes information on the distribution of the photons in their x,y spatial coordinates and their temporal decay curve. A given sample therefore becomes a map of lifetimes revealing information on the protein's structure, binding, and environment3,4. Each fluorescent protein possesses an intrinsic and precisely defined lifetime, usually of a few nanoseconds (ns), dependent on its physiochemical properties. Importantly, the lifetime of a fluorophore is independent of its concentration, fluorescent intensity, and of the imaging methodology. However, within a biological system, it can be affected by environmental factors such as pH, temperature, ion concentrations, oxygen saturation, and its interaction partners. Lifetimes are also sensitive to internal structural changes and orientation. Fusing a fluorophore to a POI results in a change in its lifetime and consequently information on the behavior of the fused protein. When a fluorophore is surrounded or encapsulated in a tightly bound environment, such as the antiparallel beta sheets of an amyloid structure, it loses energy non-radiatively, a process known as quenching5. Quenching of the fluorophore results in a shortening of its apparent lifetime. When soluble, a protein's lifetime will stay closer to its original, higher value. In contrast, when a protein starts to aggregate, its lifetime will inevitably shift to a lower value6,7. Therefore, it becomes possible to monitor the aggregation propensity of any amyloid-forming protein at different ages in living C. elegans.
Here we describe a protocol to analyze the aggregation of a fusion protein comprising different polyglutamine (CAG, Q) stretches (Q40, Q44, and Q85). We illustrate how the technique can be applied equally to different fluorophores, such as cyan fluorescent protein (CFP), yellow fluorescent protein (YFP) and monomeric red fluorescent protein (mRFP); and in all tissues of C. elegans, including the neurons, muscles, and the intestine. Moreover, in the context of proteostasis, FLIM is a very useful tool to observe changes upon depletion of molecular chaperones. Knocking down one of the key molecular chaperones, heat shock protein 1 (hsp-1), via RNA interference produces premature misfolding of proteins. The increase in aggregation load as a result of aging, disease, or deficient chaperones, is then measured as a decrease in fluorescence lifetime.
1. Synchronization of C. elegans
2. RNAi-mediated knockdown of chaperone machinery via feeding
NOTE: Perform knockdown of heat shock protein 1 (hsp-1) chaperone by feeding the corresponding RNAi vector to the nematodes10. The hsp-1 RNAi plasmid was obtained from the Ahringer library (clone ID: F26D10.3).
3. Preparation of microscopy slides
4. Mounting nematodes onto microscopy slides
NOTE: FLIM requires the nematodes to be immobilized. Perform this step once the imaging setup (e.g., microscopes, lasers, detectors) is ready to use.
5. Acquisition of FLIM data
NOTE: In this protocol, the lifetime of the fluorophore is acquired via the time-domain TCSPC method. FLIM requires a pulse of light to be generated by the laser at a set and constant repetition rate. The repetition rate varies according to the laser type and needs to be known by the user. Lifetime measurements are achieved by detectors and electronic equipment installed alongside a conventional microscope. In this protocol, measurements are performed on three different laser scanning confocal microscopes with detectors and software provided by two different companies (Table of Materials) for acquisition of mRFP, CFP, and YFP lifetimes, respectively. Check that the correct filters of emission/excitation are in place and minimize any background or monitor backlight before starting. Before starting any experiment, establish the photostability of the chosen fluorophore. If the fluorophore bleaches within a short time within the nematode tissues, it is not suitable for FLIM measurements in C. elegans.
6. Analysis of FLIM data using FLIMfit software
NOTE: Perform data analysis using the FLIMfit software tool developed at Imperial College London12 (see Figure 1).
7. Graphical representations of FLIM data
NOTE: The lifetimes collected from different samples can be visually represented in various ways. Select to denote the lifetime values either in nanoseconds or picoseconds.
The protocol shows how to accurately monitor the formation of aggregated species in living C. elegans, both during its natural aging and when subjected to stress. We selected four different strains of transgenic nematodes expressing polyglutamine proteins of either 40Q, 44Q, or 85Q repeats. These proteins are synthesized in different tissues and were fused to different fluorophores. The C. elegans strains either expressed Q40-mRFP in the body wall muscles (mQ40-RFP), Q40-CFP in the nervous system (nQ40-CFP), and either Q44-YFP or Q85-YFP in the intestine (iQ44-YFP and iQ85-YFP)13. To illustrate how aging promotes aggregation, we collected the lifetime of these polyQ strains in young nematodes, at day 4 of life, and old nematodes, at day 8. To show the effects of a deficiency in the PN, we performed a knockdown of hsp-1 in the mQ40-RFP and the nQ40 strains.
Once the lifetime values were extrapolated via the FLIMfit software, the obtained data showed a clear reduction in the lifetime of any of the polyQ constructs when aggregated due to either glutamine load, aging, or stress. FLIM distinguished between the soluble protein fraction and aggregated species, and their transition, by recording a shift in their lifetimes.
At day 4, mQ40-RFP displayed an average fluorescence lifetime of 1.69 ns (Figure 2). Upon aging, more aggregated species arose, appearing as low lifetime foci in the lifetime images and shifting the histogram to reduced lifetimes (Figure 2A). By plotting the mean fluorescence lifetime of every acquired image over the age of the nematodes a significant reduction of fluorescence lifetime, and therefore accumulation of aggregated species, became visible (Figure 2B). The protein folding capacity of the PN declined after day 4 of life in C. elegans14 and aggregation-prone proteins further misfolded to cluster into amyloid and amorphous aggregates. Apart from the PN, the intrinsic aggregation propensities of a certain protein played an important role in the progression of aggregate formation. This was analyzed by comparing the behavior of iQ44-YFP and iQ85-YFP. The longer Q-stretch of the iQ85 was more prone to aggregation and exhibited a fluorescence lifetime shift in the histogram already at day 4 of life (Figure 3A). In fact, at day 4, foci formation was observed for iQ85, while still absent in iQ44. Upon aging, however, iQ44 also exhibited foci formation and thus a reduced fluorescence lifetime. Because iQ85 already exhibited aggregates in early adulthood the progression of aggregation upon aging was less pronounced, yet significant (Figure 3B). Finally, we did not detect foci formation nor decreased fluorescence lifetime in the nQ40-CFP strain (Figure 4A). For this strain, there were only subtle, nonsignificant changes to the mean fluorescence lifetime upon aging (Figure 4B), potentially due to the neurons being less susceptible for yet unknown reasons.
Knocking down hsp-1 poses a challenge to the PN of mQ40 and nQ40 expressing nematodes. RNAi-mediated depletion of hsp-1 led to a significant increase in aggregation (Figure 5 and Figure 6). Q40 expressed in body wall muscles tended to form a small number of large foci surrounded by nonaggregated material. This resulted in two distinguishable peaks in the histograms (around 1.7 ns and 1.4 ns, see Figure 5A). The aged and RNAi treated nematodes showed a strong increase in the low lifetime peak ultimately decreasing the average fluorescence lifetime (Figure 5B). Compared to this biphasic behavior of Q40 in muscles, the neuronal Q40 displayed a more diverse aggregation behavior. We could not directly correlate foci formation with aggregation as in the muscular expression strain (Figure 6A). Because FLIM offers an opportunity to assess the degree of aggregation, the histograms revealed that there was no distinct peak but a widespread distribution of fluorescence lifetimes, pointing to a complex composition of different oligomers and higher order aggregates. Still, the overall degree of aggregation could be evaluated by plotting the mean fluorescence lifetime (Figure 6B), showing that hsp-1 knockdown led to a boost in aggregation.
It is important to note that the lifetime of the fluorophores, free from a fusion partner and outside of a biological system, was higher. Because the lifetime is affected primarily by its environment, a slight reduction of the lifetime of YFP and RFP was already noticeable within C. elegans' tissues. It is therefore important to obtain the lifetime of the soluble POI within the nematode as a suitable control. A comparison between the soluble fraction with a higher lifetime and aggregated fraction with a lower lifetime can then be made. Here, the decrease in lifetime correlated with the formation of visible foci within the muscle and intestinal cells. Still, a fraction of foci exhibited no decrease of fluorescence lifetime (see Figure 2 and Figure 3, white arrows). This feature highlights how only part of the fusion construct might be aggregated at a particular spatiotemporal point, and the presence and availability of unbound protein. A more complex scenario arose from investigation of the neuronal Q40-CFP strain. CFP intrinsically possesses two distinct fluorescence lifetimes. While CFP is an ideal fluorophore for Förster resonance energy transfer (FRET)15 measurements, in conjunction with YFP, it is not advisable to employ it to monitor formation of aggregates in C. elegans.
Figure 1: Screenshot of FLIMFit software interface. Screenshot of the software used to calculate the fluorescence lifetimes. The window depicts the interface after settings were defined as described in the text, and calculation of lifetimes was performed. Numbered arrows refer to specific steps within the protocol. Please click here to view a larger version of this figure.
Figure 2: Fluorescence lifetimes of muscular Q40-RFP decreased with age. (A) Representative maps of C. elegans expressing muscular Q40-RFP on day 4 or day 8 of life generated by FLIMfit. Fluorescence lifetimes, fluorescence intensity, and a merged image of both are provided. Scale bars = 25 µm. Histograms show a distribution of measured lifetimes for all analyzed nematodes divided into 100 categories. (B) Bar plots showing the weighted mean fluorescence lifetimes of all analyzed animals on day 4 or day 8 of life, respectively. Please click here to view a larger version of this figure.
Figure 3: Fluorescence lifetimes of intestinal Q44-YFP and intestinal Q85-YFP decreased with age. (A) Representative maps of C. elegans expressing intestinal Q44-YFP or intestinal Q85-YFP on day 4 or day 8 of life generated by FLIMfit. Fluorescence lifetimes, fluorescence intensity, and a merged image of both are provided. Scale bars = 25 µm. Histograms show a distribution of measured lifetimes for all analyzed nematodes divided into 100 categories. (B) Bar plots showing the weighted mean fluorescence lifetimes of all analyzed animals on day 4 or day 8 of life, respectively. Please click here to view a larger version of this figure.
Figure 4: Fluorescence lifetimes of neuronal Q40-CFP did not change with age. (A) Representative maps of C. elegans expressing neuronal Q40-CFP on day 4 or day 8 of life generated by FLIMfit. Fluorescence lifetimes, fluorescence intensity, and a merged image of both are provided (the second lifetime, τ2, is indicated in all samples). Scale bars = 25 µm. Histograms show a distribution of measured lifetimes for all analyzed nematodes divided into 100 categories. (B) Bar plots showing the weighted mean fluorescence lifetimes of all analyzed animals on day 4 or day 8 of life, respectively. Please click here to view a larger version of this figure.
Figure 5: Fluorescence lifetimes of muscular Q40-RFP decreased upon knockdown of hsp-1. (A) Representative maps of C. elegans expressing muscular Q40-RFP on day 4 or day 8 of life generated by FLIMfit. A merge of the fluorescence lifetime and intensity map is displayed. For both time points, nematodes that grew on bacteria expressing an empty vector (control) or bacteria expressing the hsp-1 RNAi construct are shown. Scale bars = 25 µm. Histograms show a distribution of measured lifetimes for all analyzed nematodes divided into 100 categories. (B) Bar plots showing the weighted mean fluorescence lifetimes of all analyzed animals on day 4 or day 8 of life, with control or hsp-1 RNAi, respectively. Please click here to view a larger version of this figure.
Figure 6: Fluorescence lifetimes of neuronal Q40-CFP decreased upon knockdown of hsp-1. (A) Representative maps of C. elegans expressing neuronal Q40-CFP on day 4 of life generated by FLIMfit. A merge of the fluorescence lifetime and intensity map is displayed. Nematodes shown were grown on bacteria expressing an empty vector (control) or bacteria expressing the hsp-1 RNAi construct. Scale bars = 25 µm. Histograms show a distribution of measured lifetimes for all analyzed nematodes divided into 100 categories. (B) Bar plots showing the weighted mean fluorescence lifetimes of all analyzed animals on day 4, with control RNAi or the hsp-1 RNAi. Please click here to view a larger version of this figure.
The protocol presented here describes a microscopy-based technique to identify aggregated species in the C. elegans model system. FLIM can accurately characterize the presence of both aggregated and soluble species fused to a fluorophore via measurement of their fluorescence lifetime decays. When a fusion protein starts to aggregate its recorded average lifetime will shift from a higher to a lower value16. The propensity of aggregation can then be deduced by the drop in lifetime: the lower the lifetime, the higher the presence of aggregated protein species in the system. Thereby, it becomes possible to follow the effects of aging, disease, or impairment of PN on the aggregation propensity of any protein.
To highlight the versatility of the technique, our results clearly showed that FLIM could identify the changes in structure of the various polyQ constructs, regardless of the tissue or fluorophore. Importantly, FLIM has been already successfully applied in the characterization of other aggregation-prone proteins within C. elegans, such as α-synuclein17. Furthermore, it becomes possible to apply any stress factor to C. elegans and follow the unfolding and aggregation of any POI. Osmotic, metal-ion, redox, or chemical stress can all promote toxic imbalances that can successfully be monitored in C. elegans employing FLIM. The reverse could also be possible: a delay in aggregation or even disaggregation due to the presence of beneficial compounds or boosting of the PN, can result in a rescue of the protein and a consequent lifetime increase.
FLIM has been widely employed to monitor changes in lifetime of any substance in a wide array of disciplines from chemistry to cancer biology18 to medical diagnostics, but some limitations remain. A main problem is the photostability of fluorophores. Because FLIM requires the recording of a large number of photons, photobleaching reduces the number of photons collected and can change the resulting decay curve. Furthermore, especially within the nematode system, if the intensity of the fluorophore itself is not sufficiently high for enough photons to be collected, a higher excitation is required, leading to quicker photobleaching and an unreliable decay curve. Finally, the technique requires sophisticated and costly equipment as add-ons to preexisting microscopy systems, with one critical element being the sensitivity of the detectors19.
Conversely, one of the main advantages of calculating the lifetime of a fluorophore and its fusion protein is that it provides information on different fractions of the same fluorophore-protein complex in diverse states of interactions within its environment, irrespective of its largely unknown concentration. FLIM can be used also to measure lifetime in any phase, gas, liquid, or solid and in any medium or organism that can be normally imaged, from cells to organisms, and organelles to immobilized, purified proteins20. Microscopy techniques usually rely on the steady-state imaging of a fluorescently tagged protein. Unlike steady state techniques, FLIM can resolve changes in binding, composition, and conformation of a biological substrate. For investigating aggregation-prone proteins, the presence of large fluorescent inclusions or foci can be imaged easily, but these represent only a static, intensity-based snapshot3. In the case of aggregated species, the visualized foci may also be misleading, as a high concentration of fluorophore does not necessarily result in strong amyloid formation. Via FLIM it is instead possible to distinguish soluble from insoluble material. Finally, it becomes beneficial for any investigation to obtain both the intensity-based measurements and the parallel lifetime measurement. Within the complementarity of these microscopy techniques lies their strength.
The authors have nothing to disclose.
The muscle-Q40-mRFP strain provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). The neuronal-Q40-CFP was a kind gift of the Morimoto Lab. We acknowledge the DFG (KI-1988/5-1 to JK, NeuroCure PhD fellowship by the NeuroCure Cluster of Excellence to MLP), EMBO (Short term fellowship to MLP) and the Company of Biologists (travel grants to CG and MLP) for funding. We also acknowledge the Advanced Light Microscopy imaging facility at the Max Delbrück Centre for Molecular Medicine, Berlin, for providing the setup to image the YFP constructs.
Agar-Agar Kobe I | Carl Roth GmbH + Co. KG | 5210.2 | NGM component |
Ahringer Library hsp-1 siRNA | Source BioScience UK Limited | F26D10.3 | |
Ampicillin | Carl Roth GmbH + Co. KG | K029.3 | Antibiotic |
B&H DCS-120 SPC-150 | Becker & Hickl GmbH | FLIM Aquisition software | |
B&H SPC830-SPC Image | Becker & Hickl GmbH | FLIM Aquisition software | |
BD Bacto Peptone | BD-Bionsciences | 211677 | NGM component |
C. elegans iQ44-YFP | CAENORHABDITIS GENETICS CENTER (CGC) | OG412 | |
C. elegans iQ85-YFP | Kind gift from Morimoto Lab | ||
C. elegans mQ40-RFP | Kind gift from Morimoto Lab | ||
C. elegans nQ40-CFP | Kind gift from Morimoto Lab | ||
Deckgläser-18x18mm | Carl Roth GmbH + Co. KG | 0657.2 | Cover slips |
Isopropyl-β-D-thiogalactopyranosid (IPTG) | Carl Roth GmbH + Co. KG | 2316.4 | |
Leica M165 FC | Leica Camera AG | Mounting Stereomicroscope | |
Leica TCS SP5 | Leica Camera AG | Confocal Microscope | |
Levamisole Hydrochloride | AppliChem GmbH | A4341 | Anesthetic |
OP50 Escherichia coli | CAENORHABDITIS GENETICS CENTER (CGC) | OP50 | |
PicoQuant PicoHarp300 | PicoQuant GmbH | FLIM Aquisition software | |
Sodium Azide | Carl Roth GmbH + Co. KG | K305.1 | Anesthetic |
Sodium Chloride | Carl Roth GmbH + Co. KG | 3957.2 | NGM component |
Standard-Objektträger | Carl Roth GmbH + Co. KG | 0656.1 | Glass slides |
Universal Agarose | Bio & Sell GmbH | BS20.46.500 | |
Zeiss AxioObserver.Z1 | Carl Zeiss AG | Confocal Microscope | |
Zeiss LSM510-Meta NLO | Carl Zeiss AG | Confocal Microscope |