The blood-brain barrier (BBB) is a multicellular neurovascular unit tightly regulating brain homeostasis. By combining human iPSCs and organ-on-chip technologies, we have generated a personalized BBB chip, suitable for disease modeling and CNS drug penetrability predictions. A detailed protocol is described for the generation and operation of the BBB chip.
The blood brain barrier (BBB) is formed by neurovascular units (NVUs) that shield the central nervous system (CNS) from a range of factors found in the blood that can disrupt delicate brain function. As such, the BBB is a major obstacle to the delivery of therapeutics to the CNS. Accumulating evidence suggests that the BBB plays a key role in the onset and progression of neurological diseases. Thus, there is a tremendous need for a BBB model that can predict penetration of CNS-targeted drugs as well as elucidate the BBB's role in health and disease.
We have recently combined organ-on-chip and induced pluripotent stem cell (iPSC) technologies to generate a BBB chip fully personalized to humans. This novel platform displays cellular, molecular, and physiological properties that are suitable for the prediction of drug and molecule transport across the human BBB. Furthermore, using patient-specific BBB chips, we have generated models of neurological disease and demonstrated the potential for personalized predictive medicine applications. Provided here is a detailed protocol demonstrating how to generate iPSC-derived BBB chips, beginning with differentiation of iPSC-derived brain microvascular endothelial cells (iBMECs) and resulting in mixed neural cultures containing neural progenitors, differentiated neurons, and astrocytes. Also described is a procedure for seeding cells into the organ chip and culturing of the BBB chips under controlled laminar flow. Lastly, detailed descriptions of BBB chip analyses are provided, including paracellular permeability assays for assessing drug and molecule permeability as well as immunocytochemical methods for determining the composition of cell types within the chip.
The BBB is a highly selective barrier that separates the CNS from the circulating blood. It protects critical brain functions from potentially disruptive substances, factors, and xenobiotics while also allowing the influx of nutrients and other metabolites required to maintain brain homeostasis1. The BBB is a multicellular NVU in which pericytes, astrocyte endfeet, and neuronal processes directly contact brain microvascular endothelial cells (BMECs). These interactions allow BMECs to form specialized barrier properties that are supported by tight and adherens junctions2,3. The formation of this barrier limits the paracellular passage of molecules, but it contains polarized transporters to actively transport molecules into the CNS or back into the blood1. Due to these unique barrier properties, the BBB constitutes a major obstacle to the delivery of biopharmaceuticals into the brain, and it is estimated that less than 5% of FDA-approved small molecules can reach the CNS4.
Animal models have been widely used to study BBB penetrance and the molecular mechanisms involved in BBB development5. While animal models faithfully represent the complex multicellular in vivo environment, differences in expression and activity of BBB transporters as well as substrate specificity across species often preclude accurate extrapolation of animal data to humans6. Thus, human-based models are critical to study the human BBB and for use in the development of drugs designed to target the CNS. This need becomes even more apparent with the increasing dominance of biological, human-specific drugs in the pharmaceutical development field. Accumulating evidence suggests that a compromised BBB is associated with a number of severe CNS disorders, including brain tumors and neurological diseases7,8,9. Human models faithfully reflecting these diseases have the potential to both 1) identify novel pathways that could be targeted for drug development and 2) predict CNS penetrance, thus reducing time and resources in preclinical studies and possibly decreasing failure rate in clinical trials.
In vitro models have been widely implemented to study interactions between BMECs and other cells of the NVU and conduct screens for prospective BBB-permeable drugs10. To recreate key aspects of the human BBB, in vitro models must display physiologically relevant properties (i.e., low paracellular permeability and physiologically relevant transendothelial electrical resistance [TEER] across the endothelial monolayer). In addition, the molecular profile of an in vitro system must include expression of representative functional transport systems. Typically, in vitro models are composed of endothelial cells that are co-cultured on a semipermeable membrane with combinations of other NVU cells to enhance BBB properties11. This approach allows simple and relatively rapid assessment of barrier functionality and molecule permeability. Such cell-based BBB models can be established with animal or human cell sources, including cells isolated from surgical excisions or immortalized BMEC lines.
Recently, protocols to differentiate human pluripotent cells into BMECs were introduced as an attractive source for in vitro human BBB models12,13. Induced pluripotent stem cell (iPSC)-derived BMECs (iBMECs) are highly scalable, demonstrate crucial morphological and functional characteristics of the human BBB, and carry the genetics of the patient. In culture, iBMECs form a monolayer that expresses tight junction markers and displays in vivo-like tight junction complexes. These cells also express BBB markers, including the BBB glucose transporter, glucose transporter 1 (GLUT1). Importantly, and unlike other alternative cell sources for human BMECs, iBMECs acquire barrier properties with values as high as those measured in vivo14, polarize along the basolateral axis, and express functional efflux pumps. Furthermore, the use of iPSCs from various subjects both 1) welcomes the opportunity to test aspects of the BBB in a personalized medicine manner and 2) provides a flexible source for generating additional cell types of the NVU. Generating these cells from an isogenic cell source to create personalized BBB chips would also aid in understanding inter individual differences in drug responses, which is a major cause for resistance or compromised response to treatment observed in clinical studies.
Use of iBMECs as monolayers in a dish or on a semi permeable transwell insert represents a powerful approach for BBB modeling. These systems tend to be robust, reproducible, and cost-effective. In addition, functional analyses such as TEER and permeability are relatively simple to perform. However, two-dimensional (2D) systems fail to recapitulate the 3D nature of in vivo tissue, and they lack the physiological shear stress forces provided by circulating blood and blood cells. This limits the ability of the vascular endothelium in these models to develop and maintain intrinsic BBB properties and functions.
Microengineered systems lined by living cells have been implemented to model various organ functionalities in a concept called organ-on-chips. By recreating in vivo-like multicellular architecture, tissue-tissue interfaces, physicochemical microenvironments, and vascular perfusion, these microengineered platforms generate levels of tissue and organ functionality not possible with conventional 2D culture systems. They also enable high resolution, real-time imaging, and analysis of biochemical, genetic, and metabolic profiles similar to living cells in the in vivo tissue and organ context. However, a particular challenge of the organ-on-chip is that the design, fabrication, and application of these microengineered chips requires specialized engineering expertise that is usually lacking in biologically oriented academic labs.
We have recently combined iPSC and organ-on-chip technologies to generate a personalized BBB chip model15,16. In order to overcome the technological challenges described, the commercially available Chip-S1 is used together with the culture module, an instrument designed to automate the maintenance of the chips in a simple and robust manner (Emulate Inc.). The BBB chip recreates interactions between neural and endothelial cells and achieves physiologically relevant TEER values, which is measured by custom made organ chips with integrated gold electrodes17. Additionally, the BBB chip displays low paracellular permeability, responds to inflammatory cues at the organ level, expresses active efflux pumps, and exhibits predictive transport of soluble biomarkers and biopharmaceuticals. Notably, BBB chips generated from several individuals captures the expected functional differences between healthy individuals and patients with neurological diseases15.
The protocol detailed below describes a reliable, efficient, and reproducible method for the generation of human iPSC-based BBB chips under dynamic flow conditions. Guidance is provided on the type of assays and endpoint analyses that can be performed directly in the BBB chip or from sampling effluent. Thus, the protocol demonstrates the spectrum of techniques that can be applied for evaluating biological and functional properties and responses in a human-relevant model.
A brief description of the iPSC-based BBB chip is provided here. Human iPSCs are initially differentiated and propagated in tissue culture flasks as free-floating aggregates of neural progenitors, termed EZ-spheres. The top channel of the Chip-S116,18,19 is seeded with dissociated EZ-spheres that form the "brain side" of the chip, as cells differentiate over 7 days into a mixed culture of neural progenitor cells (iNPCs), iAstrocytes, and iNeurons. Human iPSCs are also differentiated in tissue culture plates into iBMECs. The bottom channel of the chip is seeded with iBMECs to form the "blood side" as they develop to form an endothelial tube (Figure 1). The porous extracellular matrix (ECM)-coated membrane that separates the top and bottom channels 1) permits the formation of cell-to-cell interactions between channels and 2) allows the user to run permeability assays and image cells in either channel using a conventional light microscope.
1. Generation of iPSC-derived neural progenitor cells (iNPCs)
2. Differentiation of iPSCs into iBMECs
3. Microfabrication of the organ chip
4. Chip preparation
5. Surface activation and ECM coating
6. Seeding the "brain side" channel and differentiating EZ spheres into mixed neural cultures
7. Seeding iBMECs into the bottom channel to generate the "blood side"
8. Initiation of flow
9. Blood-to-brain paracellular permeability assessment
10. Immunocytochemistry
Figure 6A,B,C represents a BBB chip seeded with EZ-spheres on the "brain side" top channel and iBMECs on the "blood side'" bottom channel. iBMECs were seeded first and allowed to attach overnight, after which EZ-spheres were seeded. Chips were then cultured under static conditions with daily media replacement for seven days. The BBB chip was then fixed using 4% PFA at RT for 10 min and washed 3x with DPBS. Immunocytochemistry was performed on the BBB chip using 1) nestin as a marker for neural progenitor cells, 2) S100β or GFAP as markers for astrocytes, and 3) βIII-tubulin as a marker for neurons. GLUT-1 and Pecam-1 were used as a marker for BMECs. Imaging was performed at 20x using a confocal microscope and images were processed using Fiji for ImageJ software.
Figure 6D represents a paracellular permeability assay that was performed on organ chips populated with iBMECs and EZ-spheres, iBMECs alone (without EZ-spheres), or EZ-spheres alone (without iBMECs). Following a "Regulate" cycle, a 4 kDa Dextran-FITC tracer was added to the reservoir of the "blood side" to a final concentration of 10 µg/mL, and chips were perfused at 30 µL/h overnight. Next, media was collected from inlet and outlet reservoirs of both the top and bottom channels. 100 µL of each sample was collected and examined for fluorescence using a plate reader.
Importantly, a 1:1 calibration curve was used to transform fluorescence values into concentration values of Dextran FITC. Values were then used to calculate permeability (Papp). These results demonstrate that iBMECs form functional barrier properties, which are further tightened when iBMECs are co-cultured with EZ-spheres. Chips cultured with EZ-spheres only, fail to form a barrier. A similar approach can be used to examine the transport of any molecule across the BBB chip, depending on an available measurement method (e.g., fluorescence, ELISA, or mass spectrophotometry).
Figure 1: Schematic of the iPSC-based BBB chip. Prior to seeding on the chip, iPSCs are differentiated in culture plates into (i) EZ-spheres (neural progenitor cells, iNPCs), which are grown in suspension as spheres, and into (ii) brain microvascular endothelial cells (iBMECs). EZ-spheres are dissociated into single cells, seeded on the top channel of the organ chip, where they further differentiate into mixed neural cultures to form the "brain side". iBMECs are seeded in the bottom channel of the organ chip to form a blood vessel-like structure on the "blood side". Please click here to view a larger version of this figure.
Figure 2: Schematic of the top view of the chip in the chip carrier, with labeled ports. Please click here to view a larger version of this figure.
Figure 3: Flowchart of the iPSC-based BBB chip preparation and workflow. Pre-differentiation of both neural and endothelial cells from iPSCs is required before initiation of the workflow. Please click here to view a larger version of this figure.
Figure 4: Seeding of iBMECs in the bottom channel. Brightfield images of iBMECs seeded in the bottom channel (A) immediately after seeding or (B) 24 h post-seeding, after cells have attached. Please click here to view a larger version of this figure.
Figure 5: Schematic of the connected chip and portable module with labeled inlet and outlet media reservoirs. Please click here to view a larger version of this figure.
Figure 6: Representative results. Immunocytochemistry on the iPSC-based BBB chip 7 days post-seeding. EZ-spheres differentiated into a mixed neural cell population in the top "brain side" channel, including (A) S100β+ (green) astrocytes, Nestin+ (red) neural progenitor cells as well as (B) GFAP+ (red) astrocytes and βIII-tubulin+ (red) neurons. Scale bars = 200 µm. (C) iBMECs seeded in the bottom "blood side" channel expressed GLUT-1 and (green) PECAM-1 (CD31, red). Scale bar = 200 µm. (D) Evaluation of BBB chip permeability was performed by adding dextran-FITC (4 kDa) into the reservoir of the bottom channel. Results demonstrate that organ chips seeded with iBMECs and EZ-spheres display a tight barrier compared to organ chips seeded with iBMECs alone (*p < 0.05). Organ chips seeded with EZ-spheres alone do not display any barrier properties (***p < 0.001; one-way ANOVA with Tukey's multiple comparisons test). Please click here to view a larger version of this figure.
The combination of organ-on-chip technology and iPSC-derived cells in the NVU holds promise for accurate modeling of the human BBB. Here, we provide a detailed protocol for simple and robust application of the recently published iPSC-based BBB chip16. An overview and timing of the seeding paradigm is shown in Figure 3. To obtain and maintain barrier functions that are suitable for BBB modeling, generating a homogenous iBMEC monolayer and retaining its integrity are critical. The first step towards the generation of a functional monolayer includes chemical activation of the nonpolar PDMS surface that allows attachment of ECM proteins. The surface activation reagents degrade rapidly upon reconstitution, which may eventually result in suboptimal attachment of cells. It is therefore important to keep the reagents fresh and protected from light throughout the process.
During UV activation (section 5.2), reagents must be evenly distributed within each channel in order to achieve consistent ECM coating and homogenous cell attachment. ECM compositions and concentrations that are provided in this protocol were optimized to the specific types of cells (i.e., iBMECs and EZ-sphere-derived neural progenitor cells). Changing cell composition is possible but may require differential ECM conditions, which will require optimization. Following ECM coating, it is crucial to seed iBMECs properly. High cell seeding density (>14 x 106 cells/mL) is essential for obtaining a complete monolayer. If failing to achieve full cell confluency, it is advised to further increase the density of the cell suspension up to 20 x 106 cells/mL during seeding.
Laminar flow was previously suggested to enhance iBMEC maturation15 and is indispensable for fulfilling the advantages provided by the microfluidic platform. However, microbubbles flowing through the channels of the chip can physically stress and detach resident cells, which can lead to destruction of the BBB chip integrity. To avoid microbubble formation during laminar flow, it is critical to equilibrate the medium before perfusion is initiated. Equilibration requires pre-warming and degassing of the medium prior to use.
The generation of personalized chips is made possible using both human iPSC-derived iBMECs and iNPCs. While the differentiation of iBMECs is short and rather simple24,22, differentiation of iPSCs into neural cells21,25 is more challenging. However, the neural cells that reside in the "brain side" of the chip can be replaced by any neural cell type, such as primary neural cells or iPSC-derived motor neurons16. Similarly to "bona fide" endothelial cells, iBMECs display plasticity in gene expression in response to different neural co-cultures. Thus, this flexibility may result in future development of various NVUs on the chip. Additional flexibility of the system can be obtained by adjusting the cell seeding timing and order. iBMECs can be seeded prior to or after the neural cells, making it possible to seed iBMECs immediately following seeding and attachment of neural cells, or after EZ-spheres have differentiated into more mature neural cultures in the chip environment. This is of particular importance, given the immature nature of iPSC-derived neural cells. Given that EZ-spheres are early neural progenitors, longer differentiation periods may also result in an increased percentage of astrocytes and neurons.
One component that is missing from the protocol is perivascular pericytes, which provide a crucial component in the physiological NVU. Recent advancements in iPSCs differentiation into pericyte-like cells26,27 will permit the introduction of this additional cell type, thereby providing an improved replica of the BBB while preserving its personalized nature.
IBMECs have previously been shown to demonstrate various properties that are critical for BBB modeling including expression of cellular markers, the establishment of TEER and functional activity of efflux pumps28,24,5. However, molecular analyses have revealed that these cells also express several epithelial markers15. Advancements in iBMEC generation showing improved function and endothelial marker expression have recently been described29,30. Following the paradigm presented here, these potentially improved cells can easily be incorporated into the BBB chip model for future applications. The flexible yet robust platform described here may facilitate both disease modeling and the development and assessment of new CNS drugs.
While this protocol relies on a specific commercially available product, additional commercial companies offer diverse microphysiological platforms, which may offer alternative advantages31. In addition, protocols for "in house" manufacturing of microfluidic Organ chips are also available32 and may offer more modularity including the integration of TEER electrodes17, which is missing from the platform used here.
Organ-on-chips were introduced as an alternative approach to improve the physiological context of current cell cultures33. However, the application of this technology requires specialized engineering skills, which are often lacking in biologically oriented labs. A commercially available chip platform, such as the one employed here, provides less modularity and increased robustness and reproducibility, which can be applied by a wider array of users. Further, the application of laminar flow on a microfluidic chip relies on the application of syringe or peristaltic pumps, which introduces another level of complexity. This obstacle is now easier to overcome with the application of the culture module, which facilitates the simultaneous perfusion of multiple chips.
The authors have nothing to disclose.
We would like to thank Dr. Soshana Svendsen for critical editing. This work was supported by the Israel Science Foundation grant 1621/18, the Ministry of Science and Technology (MOST), Israel 3-15647, the California Institute for Regenerative Medicine grant ID DISC1-08800, the Sherman Family Foundation, NIH-NINDS grant 1UG3NS105703, and The ALS Association grant 18-SI-389. AH was funded by Wallenberg Foundation (grant number 2015.0178).
Accutase | EMD Millipore | SCR005 | Dissociation solution |
B27 | Gibco | 12587010 | |
Bfgf | Peprotech | 100-18B | |
Chip-S1 | Emulate Inc | Chip-S1 | Organ-Chip |
Collagen IV | Sigma | C5533 | |
DAPI | Invitrogen | D3571 | |
Dextran-FITC | Sigma | 46944 | |
DMEM: F12 | Thermo Fisher Scientific | 31330038 | |
Donkey serum | Sigma | D9663 | |
Emulate Reagent 1 (ER-1) | Emulate Inc | ER-1 | |
Emulate Reagent 2 (ER-2) | Emulate Inc | ER-2 | |
Fibronectin | Sigma | F1141 | |
Glial Fibrillary Acidic Protein (GFAP) | Dako | Z0334 | |
GLUT-1 | Invitrogen | MA5-11315 | |
Glutamax | Life Technologies | 35050038 | Glutamine supplement |
hBDNF | Peprotech | 450-02 | |
KOSR | Thermo Fisher Scientific | 10828028 | |
Laminin | Sigma | L2020 | |
Matrigel | Corning | 354234 | Basement membrane matrix |
mTeSR1 | StemCell Technologies, Inc. | 85851 | |
NEAA | Biological industries | 01-340-1B | |
Nestin | Millipore | MAB353 | |
NutriStem | Biological industries | 05-100-1A | Alternate media |
PECAM-1 | Thermo Fisher Scientific | 10333 | |
Platelet-poor plasma-derived bovine serum (PPP) | Biomedical Technologies | J64483AB | |
Retinoic acid (RA) | Sigma | R2625 | |
S100β | Abcam | ab6602 | |
Steriflip-GP Sterile Centrifuge Tube Top Filter Unit | Millipore | SCGP00525 | |
Triton X-100 | Sigma | X100 | |
ZO-1 Monoclonal Antibody | Invitrogen | 33-9100 | |
βIII-tubulin (Tuj1α) | Sigma | T8660 | |
β-mercaptoethanol | Life Technologies | 31350010 |