Microinjection of Nasonia vitripennis embryos is an essential method for generating heritable genome modifications. Described here is a detailed procedure for microinjection and transplantation of Nasonia vitripennis embryos, which will greatly facilitate future genome manipulation in this organism.
The jewel wasp Nasonia vitripennis has emerged as an effective model system for the study of processes including sex determination, haplo-diploid sex determination, venom synthesis, and host-symbiont interactions, among others. A major limitation of working with this organism is the lack of effective protocols to perform directed genome modifications. An important part of genome modification is delivery of editing reagents, including CRISPR/Cas9 molecules, into embryos through microinjection. While microinjection is well established in many model organisms, this technique is particularly challenging to perform in N. vitripennis primarily due to its small embryo size, and the fact that embryonic development occurs entirely within a parasitized blowfly pupa. The following procedure overcomes these significant challenges while demonstrating a streamlined, visual procedure for effectively removing wasp embryos from parasitized host pupae, microinjecting them, and carefully transplanting them back into the host for continuation and completion of development. This protocol will strongly enhance the capability of research groups to perform advanced genome modifications in this organism.
The jewel wasp, N. vitripennis, is one of the four species within the genus Nasonia that are ectoparasitoids of flesh eating flies such as Sarcophaga bullata1. Due to their fast-generational periods, ease of rearing in the laboratory, and a range of unique and important biological attributes, N. vitripennis has been a focus for the development of multiple experimental tools found in traditional model organisms. For example, some unique biological attributes include a haplo-diploid reproduction system2, a relationship with microbial and genetic parasites3,4, and a supernumary (B) chromosome5,6,7. Taken together, these make N. vitripennis an important experimental system for experiments aimed at elucidating the molecular and cellular aspects of these processes, in addition to others including venom production8,9, sex determination10,11, and evolution and development of axis pattern formation12,13,14. Moreover, the genetic toolkit to study the biology of N. vitripennis has dramatically increased over the last decade or so, with the sequencing of a high-resolution genome15, several gene expression studies16,17,18, and the ability to functionally disrupt gene expression relying on RNA interference (RNAi)19,20, which together have improved the tractability and capabilities of performing reverse genetics in this organism.
Despite the many important scientific advancements and expanded toolkits in this organism, as of present knowledge only one group has successfully performed embryonic microinjections to generate heritable genome modifications21. This is primarily due to the difficulties of working with embryos of N. vitripennis as they are quite fragile and small, being ~2/3 the size of Drosophila melanogaster embryos, making them generally difficult to manipulate. Additionally, N. vitripennis females deposit their eggs into pre-stung blowfly pupae, within which the entirety of embryogenesis, larval, and pupal development occurs. Therefore, for successful microinjections, pre-blastoderm stage, embryos must be efficiently collected from host pupae, quickly microinjected, and immediately transplanted back into their hosts for development. These steps require precision and dexterity to avoid damaging the microinjected embryos, or the pupal hosts, making the technique exceptionally challenging. Notwithstanding, there is one short protocol published over a decade ago that describes N. vitripennis embryo microinjection22. However, this procedure requires that the freshly laid embryos be desiccated, it uses sticky tape to anchor the eggs for microinjection, and does not include a visual demonstration of the technique. Therefore, described here is an updated and revised protocol, including a visual procedure, detailing an improved step-by-step protocol for N. vitripennis embryo microinjections that can be followed by any basic lab to generate heritable genome modifications in this important model insect.
1. N. Vitripennis Colony Rearing
2. Collection and Alignment of N. Vitripennis Pre-blastoderm Stage Embryos
3. Needle Preparation for Microinjections
4. Embryo Microinjection
5. Transplanting Injected G0 N. vitripennis Embryos onto Pre-stung Host
6. Screening for Genome Modifications
This protocol provides detailed guidelines for colony rearing, pre-blastoderm embryo collection, alignment, microinjection, and subsequent transplantation after injection and can be used for efficient genome engineering in N. vitripennis. As shown in Figure 2, the general sequence of steps for a successful microinjection into N. vitripennis include: (i) permitting male and female adults to mate (~ 4 days), (ii) supplying fresh host fly pupae (S. bullata) placed in a modified foam plug to mated females and allowing for oviposition (~ 45 min), (iii) carefully peeling away the parasitized host pupae cuticle to expose and collect pre-blastoderm stage wasp embryos (~ 15 min), (iv) aligning collected embryos (~ 15 min), (v) microinjecting genome modification components into embryos (~ 15 min), (vi) carefully placing injected embryos back into pre-stung hosts to allow for proper development (~ 15 min), and (vii) preventing dehydration of the injected embryo/host by transferring them into a humidified chamber with roughly 70% relative humidity (~ 15 min). Parasitized hosts are then incubated for roughly 14 days to allow for complete development of N. vitripennis embryos. Once injected, adults emerge from the host (viii), isolate, mate, and screen them individually for the presence of expected mutations.
For effective needle penetration and microinjection into N. vitripennis embryos, several types of capillary glass needles with filament including quartz, aluminosilicate, and borosilicate types are tested. It is found that the quality of needle is critical for avoiding breakage/clogging during injection, and for achieving high rates of both embryo survival and transformation efficiency. For each glass type, an effective protocol was developed to pull needles in order to have a desired hypodermic-like long tip effective for N. vitripennis embryo microinjection using different micropipette pullers (P-1000, and P-2000) (Table 1, Figure 4).
To optimize the procedure, survival rates are measured following injection of varying amounts of genome modification components. The genome modification components used here were mixed guide RNAs and Cas9 protein for CRISPR-mediated genome editing, which were demonstrated previously to work well in N. vitripennis21. Similar to what was previously reported, here a sgRNA targeting the cinnabar gene is designed and synthesized. By targeting and disrupting this gene, an easily identifiable phenotypic change is seen in the eye color of the organism19,21. An injection mixture combining a variety of concentrations of sgRNA (0, 20, 40, 80, 160, and 320 ng/µL) with Cas9 protein (0, 20, 40, 80, 160, and 320 ng/µL) is created and injected into embryos of wild type N. vitripennis. Survival rate of injected embryos is found to be dose-dependent (Table 2)21. The increased concentration of sgRNA and Cas9 protein lead to decreased survival rates (Table 2), perhaps due to additive off-target effects. High humidity (~ 70%) is also found to be important for embryo survival after transplantation to hosts, as low humidity (~ 10%) resulted in 100% death to all injected embryos.
Figure 1. Preparation of host pupae (S. bullata) for N. vitripennis embryo oviposition. (A)Young and old S. bullata pupae. Older pupae have a darker cuticle whereas younger pupae have a more reddish tint to their cuticle. Younger pupae are preferred for maximizing oviposition. Posterior and anterior ends of the pupae can also be distinguished by a "crater-like opening on the posterior end, whereas the anterior end comes to a rounded point. (B) Host (S. bullata) pupa preparation for N. vitripennis embryo oviposition. Inserting the host pupae into a foam plug that has had a pupae sized hole carved out. Have the posterior side of the host pupae face inside the plug while 0.2 cm of the anterior end exposed to allow for maximum concentration of oviposition into the anterior area. Please click here to view a larger version of this figure.
Figure 2. Timeline for creating N. vitripennis mutants by microinjection. Timeline of N. vitripennis embryo collection, CRISPR/Cas9 microinjection, and post-injection procedures. N. vitripennis adults were allowed to mate in absence of an oviposition site for 4 days (i). Following, a fresh, flesh fly host pupae, S. bullata, placed inside a foam stopper as to only expose 0.5 cm of the posterior end, was introduced to the gravid females for 45 min to allow for parasitization (ii). Concurrently injection materials including microinjection needles and CRISPR/Cas9 components were prepared (iii). Embryos were collected from the host (iv), aligned (v), and injected with CRISPR/Cas9 components (vi). The injected embryos were carefully transferred back to a pre-stung host (vii) and incubated till fully developed (14 days) (viii). When the adults emerged, mutants were screened for phenotypes of expected CRISPR/Cas9 induced mutations in the target gene (ix). The entire procedure generally takes 19 days to complete. Please click here to view a larger version of this figure.
Figure 3. Modified microscope slide for lining embryos. (A) A coverslip. (B) A microscope slide. (C) An embryo alignment device. A coverslip can be glued onto a microscope slide to be used to line embryos for injection. The purpose of the coverslip is to act as an edge to allow for easy manipulation and lining of embryos. Please click here to view a larger version of this figure.
Figure 4. Injection needle preparation. (A) Examples of good and bad aluminosilicate glass needles. (B) The tips of an unbeveled, correctly beveled, and poorly beveled needle. Aluminosilicate glass capillary tubes were pulled by using a micropipette puller. The produced needle tips were then gently opened and refined using a beveler. The good bevelled needle has a very sharp tip, and the bad bevelled needle has a blunt tip. Please click here to view a larger version of this figure.
Capillary Glass Type | Sutter Needle Puller Model | Heat | Filament | Velocity | Delay | Pull | Pressure |
Quartz | P-2000 | 750 | 4 | 40 | 150 | 165 | – |
Aluminosilicate | P-1000 | 605 | – | 130 | 80 | 70 | 500 |
Borosilicate | P-1000 | 450 | – | 130 | 80 | 70 | 500 |
Table 1. Settings for needle puller.
Note: Needle puller setting vary from machine to machine so each lab will need to optimize their own needle puller settings. This table has been modified from Li et al.21
sgRNA-1 | Cas9 | Total embryos | Transplantation (10% humidity) | Transplantation (70% humidity) | |||
Larvae Survivors | Larvae Survivors | Adult survivors | |||||
Total (%) | Total (%) | ♂ | ♀ | Total (%) | |||
No injection | No injection | 100 | 94 (94) | 96 (96) | 66 | 26 | 92 (92) |
Water | Water | 100 | 0 (0) | 78 (78) | 44 | 32 | 76 (76) |
20 ng/µL | 20 ng/µL | 100 | 0 (0) | 74 (74) | 34 | 34 | 68 (68) |
40 ng/µL | 40 ng/µL | 100 | 0 (0) | 67 (67) | 30 | 32 | 62 (62) |
80 ng/µL | 80 ng/µL | 100 | 0 (0) | 53 (53) | 24 | 22 | 46 (46) |
160 ng/µL | 160 ng/µL | 100 | 0 (0) | 41 (41) | 16 | 22 | 38 (38) |
320 ng/µL | 320 ng/µL | 100 | 0 (0) | 25 (25) | 10 | 10 | 20 (20) |
Table 2. Injection and transplantation survivorship and mutagenesis rates based on injections of different concentrations of sgRNA and Cas9. This table has been modified from Li et al.21
The recent sequencing of the N. vitripennis genome has unleashed an important need for molecular tools to functionally characterize unknown genes within this species23. The CRISPR-Cas9 system, and many other gene editing tools, have proven to be valuable in investigating gene functions for a number of organisms24. However, to generate heritable mutations, these tools require performing embryo microinjections. Therefore, demonstrated here is a detailed visual technique that includes a number of innovations that allow for efficient N. vitripennis embryo microinjections.
Overall, this detailed technique offers a number of significant innovations, with respect to existing methods23, that allow for efficient N. vitripennis embryo microinjections. For example, to facilitate the rapid collection of embryos, an oviposition tool (foam stopper) is created and used to restrict egg laying entirely to the posterior end of the host (Figure 1), which greatly facilitates collection of numerous embryos within a short period of time. Techniques for rearing wasp colonies with large numbers to collect greater numbers of eggs are also improved and defined. Additionally, to accelerate embryo alignment, an embryo alignment device which allows for embryos to be efficiently aligned and injected without having to use double-sided sticky tape to secure the embryos in place (Figure 3) is developed.
Furthermore, it is found that by keeping the embryos moist with water during injection and not desiccating the embryos or covering them with oil improved survival rates. Additionally, several capillary glass types are tested and parameters to construct the perfect needles for N. vitripennis microinjection (Table 1, Figure 4) are determined. Moreover, following microinjection, embryo survival rates are able to significantly increase due to incubating injected eggs in pre-stung hosts placed in high-humidity (70%) chambers. These innovations allow for a more streamlined and successful microinjection procedure for N. vitripennis.
Minor modifications in terms of injection apparatus, and rearing procedures can be made to this protocol, depending on user preferences. However, a number of critical steps will be essential for successfully generating mutants in N. vitripennis. For example, working quickly so that injected embryos are > 1 h old, and ensuring that injection needles are sharp enough to minimize damage to the embryo will both be essential. While this protocol should be effective for generating mutations in many (if not all) genes, one major limitation is the CRIPSR/Cas9 requirement to target a PAM (NGG) sequence which will dictate the target sequence.
In conclusion, this improved technique can be used to generate many kinds of genome modifications, such as mutations, deletions, and possibly even insertions using CRIPSR/Cas9 technologies21, or even transgene insertions to generate transgenic N. vitripennis, which should greatly accelerate functional research in this organism.
The authors have nothing to disclose.
This work was supported by a generous University of California, Riverside (UCR) laboratory start-up fund to O.S.A, a USDA National Institute of Food and Agriculture (NIFA) Hatch project (1009509) to O.S.A.
Bugdorm | Bugdorm | 41515 | Insect Rearing Cage |
Glass Test Tubes | Fisher Scientific | 982010 | |
Flesh fly pupae, Sarcophaga bullata | Carolina Insects | 144440 | |
Microelectrode Beveler | Sutter Instruments | BV10 | |
Diamond abrasive plate (0.7u to 2.0u tip sizes) | Sutter Instruments | 104E | |
Micromanipulator | World Precision Instruments | Kite R | |
Femtojet Express programmable microinjector | Eppendorf | ||
Micropipette Puller | Sutter Instruments | P-1000 or P-2000 | |
Stereo Microscope | Olympus | SZ51 | |
Compound Microscope | Leica DM-750 | ||
Aluminosilicate glass capillary tubing 1mm(outside diameter) X 0.58mm (inner diameter) | Sutter Instruments | BF100-58-10 | Can also use Borosilicate or Quartz |
Identi-Plugs | JAECE | L800-B | Foam plugs |
Microscope Slides | Fisherbrand | 12-550-A3 | |
Micro Cover glass | VWR | 48366045 | |
Adhesive | Aron Alpha | AA471 | For glueing coverslip onto microscope slide |
Fine-tip paintbrush | ZEM | 2595 | |
Ultra-fine tip forcep | Fisher Scientific | 16-100-121 | |
Femtotips Microloader tips | Fisher Scientific | E5242956003 |