Semen liquefaction is required for sperm to be liberated from the seminal gel. This study provides the procedures for collecting semen from the female reproductive tract post-coitus, and measuring semen liquefaction time.
In mice, ejaculated semen is deposited in the uterus. After ejaculation, the semen changes consistency from gel-like to watery, a process called liquefaction. In this study, we show how to collect the post-ejaculated semen from the female reproductive tract in a mouse model. First, adult female mice in the estrus stage were housed in a male's cage overnight. The next morning, copulation was confirmed by the presence of copulatory plug at the vaginal opening. Female mice with copulatory plugs were euthanized, and each reproductive tract was collected as a whole (vagina, uterus, oviducts, ovaries), ensuring a closed system to contain the semen. The reproductive tract was placed in a 1.5 mL microcentrifuge tube, and the vagina was cut off to release the semen into the tube. To ensure maximum semen volume for analysis, toothless forceps were used to squeeze the uterine horns from ovarian end to vaginal end expelling remaining semen. The whole reproductive tract was then discarded. The semen-containing tube was briefly spun down. A 25 μL capillary pipette was placed into the tube at a 180° angle (parallel to the tube wall). The amount of time used to fill the capillary tube to the 25 μL line was recorded. Semen from a proven male breeder usually takes approximately 60-180 s to fill a 25 μL capillary tube. This semen collection technique can also be used in other downstream applications such as sperm imaging and motility analysis.
The female reproductive tract is comprised of the upper and lower tracts. The upper reproductive tract includes Fallopian tubes, the uterus, and the endocervix. The lower reproductive tract includes the ectocervix and the vagina. In humans, the ejaculated semen is deposited at the anterior wall of the vagina, adjacent to the ectocervix1. In mice, however, the semen is swept into the uterus within minutes after mating2.
Semen contains seminal gel that is solidified within seconds of ejaculation, causing the sperm to be entrapped and immobilized3. Liquefaction releases the immobilized sperm by changing semen from a gel-like to a watery consistency. This process is essential for sperm motility and mammalian reproduction. Knowledge of semen liquefaction is mostly based on in vitro studies where semen becomes liquefied in a culture dish. In humans, the enzymatic activity of prostate specific antigen or PSA (also known as kallikrein-related peptidase 3 or KLK3) is the major contributor for liquefaction through hydrolysis of semenogelins (gel-forming proteins present in the semen)4,5,6. Degradation of semenogelins liberates the sperm from the seminal coagulum, increasing sperm mobility. Freed sperm swim toward the Fallopian tube to fertilize the egg. Liquefaction (or semen viscosity) tests are one of the standard initial screenings for semen analysis in fertility clinics to assess male fertility7.
A recently published article shows that analysis of seminal fluid collected from the female mouse reproductive tract post-mating can be used to illustrate a deficiency in liquefaction that can subsequently cause fertility defects8. Defective liquefaction such as semen hyperviscosity contributes to 11.8-32.3% of infertile cases in men9, suggesting that normal liquefaction is indispensable for mammalian reproduction. However, studies and treatment of liquefaction defects have focused exclusively on the male7. The possibility that the female reproductive tract plays a role in semen liquefaction has not been explored. Therefore, the methods for semen collection and measuring liquefaction time will provide researchers a novel diagnostic tool to determine whether liquefaction could be one of the causes of infertility in the model organism of interest.
All animals and procedures used in this study were handled according to Washington State University (WSU) Animal Care and Use Committee guidelines and in compliance with WSU-approved animal protocols #4702 and #4735.
1. Mice
2. Mating and Assessing Copulatory Plugs
3. Preparation Before Tissue Collection
4. Tissue Collection
5. Measurement of Semen Liquefaction (Viscosity) from Uterine Content Collection
6. Video Imaging of Sperm Motility
Semen was collected from CTRL and KO females approximately 8 h after mating with fertile CTRL males. Liquefaction (or semen viscosity) is quantified by the time taken to fill 25 μL capillary tube with semen. Semen collected from CTRL uteri took 2.06 ±0.12 min (mean±S.E.M, n = 5) to fill the capillary tube (Figure 1). However, the semen collected from KO uteri took longer than 60 min (60.0 ±0.0, mean±S.E.M, n = 5) of experimental time. These data suggest that the semen is significantly more liquefied or less viscous in the CTRL compared to KO uteri.
To illustrate one of the downstream applications of collecting semen from the female reproductive tract, sperm motility was assessed using video imaging. The semen collected from the CTRL uteri showed freely-swimming sperm within the microscopic field, represented in the snapshot in Figure 2A. The semen collected from the KO uteri showed that the majority of the sperm were clustered together with minimal mobility (Figure 2B). These findings indicate that the semen collected from the female reproductive tract 8 h after mating can be used for further sperm analysis.
Figure 1: Liquefaction time (semen viscosity) from the semen collected from mouse uteri. Graphical representation of the liquefaction time (min) of semen collected from CTRL and KO uteri approximately 8 h after mating. Data represent mean±S.E.M., n = 5 females/genotype. ***p <0.001, unpaired Student t-test. Adapted from previously published results8 with permission. Please click here to view a larger version of this figure.
Figure 2: Representative images of sperm within the semen collected from mouse uteri. Representative snapshots from the video imaging taken at 1000X magnification of sperm in the semen collected from (A) CTRL and (B) KO uteri. Adapted from previously published results8 with permission. Please click here to view a larger version of this figure.
Collecting semen from mouse uteri can provide advantages over semen analysis in vitro as the former can illustrate the physiological interactions between the semen and the secretions from the female reproductive tract. The techniques presented in this study allow researchers to determine semen quality as well as sperm viability and motility in ideal physiological conditions. Moreover, there are various downstream analyses that can be performed using the semen collected from the uteri, for example, the sperm can be counted to determine the actual sperm number entering the uterus and the sperm can also be imaged for the motility assays. The ideal time point to collect the semen for fertilization capability should be within 1 to 2 h after mating1.
In addition to the previously mentioned downstream applications, investigators can also evaluate the effects of inhibitors/compounds of interest on sperm transport processes, such as semen liquefaction (or semen viscosity), sperm number in the tract, sperm motility, or sperm migration to different areas of the female reproductive tract. The compounds can be applied in the female reproductive tract prior to mating8. Then, the impact of those inhibitors/compounds can be assessed from the semen sample post-mating. These methods can be useful to test the practicality of contraceptive drugs that inhibit sperm transport.
Crucial points of consideration for semen collection and liquefaction/viscosity measurements are the sensitivity of the sperm and the angle of the capillary tube. Sperm are sensitive to temperature change. If downstream analysis of sperm function and motility is essential for experimental outcomes, the tissue and semen need to be kept at 37 °C at all times, with the minimal exposure to light. If there are several samples to collect from multiple females, euthanize the animals one at a time to minimize wait. For the liquefaction measurement, different angles of the capillary tube generate inconsistencies in liquefaction time. Therefore, the investigators have to hold the capillary tube parallel to the tube wall (at a 180° angle) to minimize the variability created by each investigator. Semen sample should not be collected later than 09:00h, this is due to the fluid reabsorption in the uterus. The investigator may not obtain sufficient fluid material for the liquefaction measurement.
It is established that the semen liquefaction is mainly mediated by the enzymatic activity of PSA secreted from the prostate gland13. However, there are limited studies to determine the roles of female reproductive tract during in vivo liquefaction process8. Therefore, collection of the semen from the female reproductive tract provides a crucial advantage to study the liquefaction processes in vivo, after the semen has been exposed to secretions from the female reproductive tract14. In conclusion, post-ejaculated semen liquefaction/viscosity measurement allows the researchers to decipher the interplay between semen and the female reproductive tract.
The authors have nothing to disclose.
This work is supported by College of Veterinary Medicine (WSU) start-up fund to WW. The authors thank Sierra Olsen (WSU) for critical reading of this manuscript.
Toothpick | Diamond | 750-Flat | Autoclaved sterile, use blunted toothpick. Do not use point-ended |
Dissecting scissors | Fisher | 08-940 | |
Spring scissors | Roboz | RS-5600 | |
Fine forceps | Roboz | RS-5045 | |
25-μL glass capillary tube | VWR | 53432-761 | |
Leibovitz’s L-15 media | Life Technologies | 11415064 | Supplement with 1% FBS |
Fetal bovine serum (FBS) | Gemini Bio-Products | 100-106 | |
1.5-mL microcentrifuge tube | Axygen | MCT-150-C | |
2-mL microcentrifuge tube | Axygen | MCT-200-A | |
Digital dry block heater | VWR | 13259-052 | For warming the microcentrifuge tube prior to semen collection |
Minicentrifuge | Corning | LSE 6765 | |
35-mm culture dish | VWR | 10861-656 | |
15-mL polypropylene centrifuge tube | VWR | 10025-686 | |
Waterbath | Precision | TSGP05 | |
Heated stage stereomicroscope | Leica Microsystems | MZ10F | To keep the tissue warm prior to semen collection |
Brightfield microscope | Leica Microsystems | DMi8 | Optional. For video imaging of the sperm motility |
Camera | Leica Microsystems | DMC2900 | Optional. For video imaging of the sperm motility |
Glass slides | Fisher | 12-552-3 | Optional. For video imaging of the sperm motility |
Coverslip | VWR | 48393-059 | Optional. For video imaging of the sperm motility |
Bleach | Dilute in dH2O to 10% concentration |