Presented here is a modified roller tube method for culturing and intermittent high-resolution imaging of rodent brain slices over many weeks with precise repositioning on photoetched coverslips. Neuronal viability and slice morphology are well maintained. Applications of this fully enclosed system using viruses for cell-type specific expression are provided.
Cultured rodent brain slices are useful for studying the cellular and molecular behavior of neurons and glia in an environment that maintains many of their normal in vivo interactions. Slices obtained from a variety of transgenic mouse lines or use of viral vectors for expression of fluorescently tagged proteins or reporters in wild type brain slices allow for high-resolution imaging by fluorescence microscopy. Although several methods have been developed for imaging brain slices, combining slice culture with the ability to perform repetitive high-resolution imaging of specific cells in live slices over long time periods has posed problems. This is especially true when viral vectors are used for expression of exogenous proteins since this is best done in a closed system to protect users and prevent cross contamination. Simple modifications made to the roller tube brain slice culture method that allow for repetitive high-resolution imaging of slices over many weeks in an enclosed system are reported. Culturing slices on photoetched coverslips permits the use of fiducial marks to rapidly and precisely reposition the stage to image the identical field over time before and after different treatments. Examples are shown for the use of this method combined with specific neuronal staining and expression to observe changes in hippocampal slice architecture, viral-mediated neuronal expression of fluorescent proteins, and the development of cofilin pathology, which was previously observed in the hippocampus of Alzheimer’s disease (AD) in response to slice treatment with oligomers of amyloid-β (Aβ) peptide.
Primary culture of dissociated neurons from regions of rodent brain is an important tool used by researchers to observe responses to pathologically implicated stimuli. However, such studies have the disadvantage of looking at neurons in only 2D and without their glial support system. Furthermore, unless grown under conditions of very high density (640 neurons/mm2 or about 16% of surface area) in which it becomes impossible to follow the random outgrowth of a dendrite or axon for more than a short distance from its cell body, hippocampal neuronal viability over 4 weeks declines significantly1, limiting the use of dissociated cultures for extended studies of age-related pathologies. The culturing of slices prepared from rodent brain is an attractive option that overcomes these limitations by maintaining an organized cell architecture and viability for weeks or months. Conditions for maintaining many different regions of rodent brain in slice culture have been described2.
Two major methods are widely used for long-term culture of brain slices: culturing on membranes at the air-liquid interface3 or culturing on coverslips in sealed tubes allowed to rotate in a roller incubator to provide aeration4. Slices cultured on membranes can be directly imaged with high-resolution fluorescence microscopy using an upright microscope and water immersion objectives5. Alternatively, slices cultured on membranes have been transferred to glass bottom dishes to achieve good resolution of dendritic spines using an inverted microscope6. However, both methods of imaging slices grown on membranes are open systems that require medium changes and often use antifungal and/or antibiotics to prevent or reduce contamination5,6. Slices on a membrane at the air-medium interface maintain excellent morphology and survival, but returning to precise locations during repetitive imaging at high magnification is extremely difficult unless the experiment is following only small groups of cells expressing a fluorescent marker. Although slices grown on membranes have been used with viral-mediated expression of transgenes5,6, biosafety protocols may require an enclosed culture system be employed for certain viral vectors that are used for expressing fluorescently tagged proteins and reporters of cell physiology. Furthermore, immersion objectives require decontamination between samples that will be followed in culture5. One major application of membrane interface cultures is combining high-resolution imaging with electrophysiology at single time points7.
The roller tube method with coverslips inside the plastic tube does not permit any electrophysiology or high-resolution imaging without removing the coverslip. Thus, this method has been most often applied to long-term studies in which post-fixation observations have been made8. Described here is a method that utilizes the roller tube culture technique but on drilled-out tubes with slices on coverslips that can be imaged repetitively for as long as the cultures are maintained. The enclosed system requires no medium change for imaging and utilizes photoetched coverslips to provide fiducial marks that allow imaging at high magnification, after days or weeks, the precise fields previously imaged.
We apply this method to examine changes in the rodent hippocampus, a major brain region involved in memory and learning. The rodent hippocampus is often studied as a model for pathological or age-related changes observed during development of cognitive impairment9, such as those that occur in AD. Our method is particularly well suited to study pathological changes that develop within a single slice over time in response to environmental changes, such as increases in Aβ peptides, which is characteristic of AD8. One pathology associated with human and rodent AD brain is the presence of cofilin-actin aggregates and rods, the latter containing bundles of filaments in which cofilin and actin are in a 1:1 molar ratio10,11,12. Rods have been observed in fixed slices of rat hippocampus following Aβ treatment, as well as within a live rodent brain slice expressing cofilin-GFP subjected to hypoxia8, and they may contribute to the synaptic dysfunction seen in AD and stroke. Here we use this new culturing method to observe the time course and distribution within slices of expressed exogenous chimeric fluorescent proteins introduced by different viruses. We then utilize the neuronal specific expression of a cofilin reporter construct to follow the development of cofilin rod and aggregate pathology in hippocampal slices in response to treatment with soluble Aβ oligomers (Aβo).
Animal use follows approved breeding and animal use protocols that conform to the Animal Care and Use Guidelines of Colorado State University.
NOTE: The protocol below describes the preparation and culture method for the long-term incubation and intermittent imaging of hippocampal slices. A single hippocampal slice is attached to a specially prepared photoetched coverslip using a plasma clot, and then the coverslips are sealed onto the flat side of a drilled-out roller tube, which is maintained in a roller incubator. Plasma clots are dissolved with plasmin before viral infection for fluorescent protein expression and high-resolution imaging. A fluorescent neuronal vital dye is used to image neurons within the slices.
1. Preparation of Roller Tube Rack
2. Preparation of Roller Tubes and Coverslips
3. Hippocampal Slice Preparation
4. Plating Slices
5. Preparation of Viral Vectors for Transgene Expression
NOTE: Expression of transgenes in neurons of slice cultures is achieved either by using brains from genetically engineered rodents or by introducing the transgene by infection with recombinant replication deficient viruses. Adenoviruses (AV), adeno-associated viruses (AAV), and recombinant lentivirus vectors have all been used in our hippocampal slice cultures for expression of different fluorescent protein chimeras in brain slices.
6. Slice Treatments
7. Slice Imaging
To determine how accurately fiducial marks can be utilized to reimage the same cells within the same fields over time, we examined slices grown on photoetched coverslips (Figure 6A). Neurons were visualized by staining with a vital dye (100 nM for 2 h; does not stain non-neuronal cells), which disappears from neurons over time without harming the cells25. We identified a fiducial mark in a single grid square (Figure 6A, B), found a region of vital dye-labeled neurons 24 h after labeling, recorded the x and y offset positions from the fiducial mark (Figure 6B), and collected, using a 60X objective, confocal image stacks of this region, repeating the imaging on 4 consecutive days. The maximum projection images of a 30 µm image stack taken in the same location are shown (Figure 6C-F). Although some morphological changes occur within the region over 4 days, the identical cells (several of which are marked) can be followed over time. The fluorescence intensity of the vital dye declined over time but neurons were still clearly identifiable 4 days after labeling. Although most of the neuronal vital dye fluorescence was diffuse within the cytoplasm, some punctate staining was always observed, which became more noticeable as background fluorescence declined. In unhealthy slices, a punctate staining of non-neuronal cells was also observed as slices deteriorated. These results demonstrate that identified cells in slices can be repetitively imaged by using fiducial marks to find them.
To examine time-dependent changes in neuronal organization and viability within slices during long-term culture, we followed the same slices over 5 weeks, labeling with fluorescent neuronal vital dye once per week 24 h before imaging. Multiple rounds of staining with this vital dye over several weeks increased accumulation of aggregates. Neurons within freshly plated slices that were still in plasma clots were loaded with dye and imaged at one day in vitro (1 DIV). The same slices were imaged again weekly for 5 weeks. Images obtained from a single slice with a 4x objective are shown (Figure 7A-E). The pyramidal cell layers of the CA and DG regions are brightly labeled when excited at 488 nm and fluorescence emission measured at > 620 nm. Over a 5-week period of observing 19 slices, three slices came off the coverslip and two others lost their typical morphology and became opaque, an indication of their death. Thus, a survival rate of about 70% for experiments should be considered, and extra slices prepared to assure an adequate number for analysis. Slices were prepared at a nominal thickness setting on the tissue chopper of 300 µm. After 5 weeks in culture, we measured the slice thickness by imaging neuronal vital dye-stained slices from the coverslip up through the slice with a 40X oil objective on a spinning disc confocal microscope. Loss of focus of neurons occurred at an average of 257 nm (n = 5 slices with multiple locations used per slice), demonstrating that very little thinning of the slice had occurred from the time of plating. We could not accurately measure the slice thickness by fluorescence microscopy at the time of plating because the vital dye entrapped in the plasma clot gave diffuse fluorescence making it difficult to accurately measure the position at which loss of focus occurred. However, 3D images of neurons within slices are easily obtained in slices after the plasma clot is removed. The 21 DIV slice, shown at low magnification in Figure 7F, was imaged with a 60X objective on a confocal microscope (1 µm steps) 3 days after loading with the neuronal vital dye. A 60 µm 3D image was built from the focal planes (Figure 7G). Neurons and their neurite processes that are labeled with the vital dye can be followed in 3D. Morphology and 3D structure of slices were well-maintained over at least 3 months, and the longest times were used in the current study.
Major changes in the morphology of a previously imaged position also occurred in some slices, suggesting that movement of the slice on the coverslip may take place. Certainly, over longer intervals between imaging it became more difficult to know with certainty that the cells in the field being imaged were identical to the ones observed in previous imaging sessions. Thus, maximum projection images of confocal stacks of vital dye-labeled slices acquired at the identical location with the 60x objective at weekly intervals spanning 4 weeks (Figure 8) show that neuronal viability is well maintained but that it is difficult to identify a specific neuron over time when images are obtained with long time intervals between sessions. Presumably the pattern of cells labeled with multiple fluorophores would be more easily recognized, as are cells in localized groups when observed by scrolling through an image stack.
To assess the usefulness of different viral vectors for introduction of exogenous genes in neurons of hippocampal slices, we compared slice infectivity using AV, AAV, and recombinant lentiviral vectors, each expressing different fluorescent tags or using different promoters to drive expression. AV (2 x 107 infectious U/slice) expressing cofilin-mRFP behind a strong, non-cell specific CMV promoter was used to infect a mouse hippocampal slice that had been cultured 9 weeks on coverslips. Expression of cofilin-mRFP was found throughout the slice at 5 days post-infection, with expression most intense around the slice periphery as observed with a 4x objective (Figure 9A). Cells within the slice expressing cofilin-mRFP were also observed with a 20X objective (Figure 9B) with some bright punctate staining and also diffuse expression in both neurons and non-neuronal cells. After 17 weeks in culture (8 weeks post-infection), spontaneous cofilin-rods had formed in some cells, presumably driven by overexpression of wild type cofilin-mRFP (Figure 9C)26,27.
We also demonstrated that AAV (1010 particles) could be used for expression in slices. Images of slices infected at 9 weeks in culture with AAV, in which a neuronal specific synapsin promoter drove expression of GCaMP5-cofilin-mRFP with a self-cleaving P2A peptide sequence in the linker of the translated polyprotein21, were captured 8 weeks post-infection (17 weeks in culture). In neurons expressing the GCaMP5 and cofilin-mRFP, some cofilin rods/aggregates formed (Figure 9D-F). The fluorescence intensity of the rods/aggregates was so strong that very little fluorescence of a diffuse cofilin-mRFP could be observed without complete saturation and blossoming of the cofilin fluorescence image of rods. Spontaneous cofilin rods appear in neurons in which wild-type cofilin-fluorescent protein chimeras have been over-expressed26,27, as well as in stressed neurons10. Based on the titers of adenovirus, which are determined on the basis of infectivity14 and the particle counts used for determining AAV titer, about 100 to 500 fold higher particle numbers of AAV are needed to obtain approximately the same infectivity/expression in slices compared to AV.
To follow recombinant lentivirus-mediated expression of fluorescent proteins in slices, slices were infected at 6 DIV with 1, 3, 10, and 30 µL aliquots of a recombinant lentivirus for neuronal specific expression (synapsin promoter) of cofilin-R21Q-mRFP, developed as a live cell imaging probe for cofilin-actin rod formation16. Slices were labeled with neuronal vital dye at 11 DIV and imaged in specific regions for the dye and cofilin-R21Q-mRFP expression on 12 and 14 DIV. The slice infected with the 30 µL aliquot of virus did not survive for imaging but triplicate slices treated with the other volumes of virus showed a dose-dependent expression of mRFP. Figure 10 shows images of slices infected with 1 µL and 10 µL of lentivirus at 6 and 8 days post-infection. Multiple regions of two different slices were quantified for co-staining of neurons with the vital dye and mRFP expression. For slices infected with 1 µL of lentivirus, about 28% of neurons expressed mRFP at 6 days post-infection, increasing to 85% by 8 days post-infection. For slices infected with 10 µL of lentivirus, about 58% of neurons expressed mRFP at 6 days post-infection, increasing to 86% by 8 days post-infection. Thus, 1 µL of the lentivirus was sufficient to provide widespread slice infectivity and neuronal expression by 8 days post-infection.
To demonstrate that this culture system is useful in following development of cofilin pathology, slices infected with lentivirus for expressing cofilin-R21Q-mRFP in neurons were left untreated or treated with various concentrations (1 µM, 333 nM, and 100 nM) of synthetic human Aβ protein that had undergone incubation to form oligomers28. Results from previous studies demonstrated that synthetic Aβo induce cofilin-actin rods in up to 25% of dissociated hippocampal neurons29,30,31. All three slices treated with the 1 µM concentration of Aβ came loose from the coverslip in the first 24 h, whereas all vehicle treated slices (control) and those treated with the 333 nM and 100 nM concentrations of Aβ survived for the two weeks that they were followed. The same cellular regions (CA1, CA3, and DG) in a slice treated with 100 nM Aβo were imaged (60x objective) over several days. Control slices that were infected on 6 DIV with lentivirus for expressing synapsin driven cofilinR21Q-mRFP had diffuse cellular mRFP expression by 15 DIV (Figure 11A). Slices exposed to 100 nM Aβo at 14 DIV and imaged at 15 DIV showed that the distribution of cofilin-R21Q-mRFP became punctate, appearing in both rod shaped structures and aggregates (Figure 11B). These structures became even more prominent 6 days after Aβ-treatment (Figure 11C, which is the same field of cells as Figure 11B). In many places rich in neurites where neuronal cell somas are absent (Figure 11D), punctate and rod-like arrays of cofilinR21Q-mRFP developed (arrows in Figure 11C), similar to the distribution of cofilin-actin rods previously reported within neurites of Aβ-treated neurons in culture29,30,31. Thus, this new method for culturing and observing hippocampal slices will allow users to determine the long-term viability of cells in which cofilin aggregates and rods form and the reversibility of the pathology at various stages of development, and to easily perform dose-response measurements on reagents that could block or reverse the formation of cofilin pathology in a more in vivo-like cellular organization.
Figure 1: Preparation of roller tube rack. (A) Template for marking hole positions for drilling out the 15 cm tissue culture dish bottoms. If the figure is printed to the size of the scale bar shown, it can be cut out and used for marking the positions on a 15 cm culture dish for drilling the holes shown. (B) Completed roller tube rack with two tubes inserted. Each rack is numbered on a sticker easily visible on the top of the rack. Please click here to view a larger version of this figure.
Figure 2: Preparation of the roller culture tubes. (A) Front view of the roller tube inserted in a jig on a drill press for drilling out the 6 mm hole in the tube. Dashed line shows the position of the flat sided roller tube in the jig. (B) End view of the jig with the tube inserted and drill bit aligned over hole. (C) Top view of the hole in the jig for drilling out roller tubes with a 6 mm drill bit. White arrow shows the position of the cut-off nail inserted as a stop for positioning the tubes, and black double lines are for bit alignment. (D) Spring clips (black arrow) installed on the jig bottom to securely hold it in position when drilling tubes. (E) After drilling out the hole, the edges are smoothed with a deburring tool and grooves are cut on the inner side of the hole (inset shows the hole viewed through a dissection microscope) to enhance medium draining from the hole during tube rotation. (F) Culture tube with the hole aligned to a hole in the silicone rubber adhesive, to which the coverslip will be attached. Please click here to view a larger version of this figure.
Figure 3: Preparation of hippocampal brain slices. Photos taken with a dissection microscope showing: (A) intact mouse brain. Position of cuts to remove forebrain and cerebellum are shown as blue dashed lines. (B) after removal of forebrain and cerebellum. (C) piece of brain from B is flipped 90° with posterior region (toward the cerebellum) facing up. Positioning the piece next to the side of the dish helps with the removal of the midbrain (blue dashed circle) which can be teased away from the remaining hippocampus, thalamus, and hypothalamus. Two cuts with the forceps (blue dashed lines) allow the remaining piece containing the hippocampus from both hemispheres to be spread flat. (D) The flattened brain piece showing the blood vessel running along the hippocampal fissure (blue arrow). This tissue is placed on plastic film and transferred to the tissue chopper for slicing in the direction of the dashed line. (E) Sliced tissue showing slightly more than half the hippocampus after being returned to GBSS/glucose. (F) Final dissection of the hippocampus and cleaning of the slices to remove non-hippocampal material. (G) Several floating slices after final clean-up. (H) Enlarged photo of a single slice for transfer to coverslip. Please click here to view a larger version of this figure.
Figure 4: Plating and incubating slices. (A) A mouse hippocampal slice is removed from the culture dish on the tip of a spatula using the tip of forceps to help lift it free from the solution. (B) The slice is placed flat in the center of a photoetched and treated 12 mm coverslip on 2 µL of chicken plasma and another 2.5 µL of a 1:1 plasma/thrombin mixture is added to generate a clot. (C) After the clot is set (about 1-2 min), the covering is removed from the silicone rubber adhesive circle on a roller tube and the coverslip is positioned with the clot centered into the hole; then the coverslip is pressed in place with a thumb and held in position for about 1 min. (D) Add 0.8 mL of complete culture medium. (E) Roller tube holders inside of a large roller incubator with the front raised to tilt 5° to keep the medium at the bottom of the tubes. Please click here to view a larger version of this figure.
Figure 5: Roller tube holder and stage plate incubator. (A) Tube holder that positions the tube such that the coverslip is maintained in position for imaging. (B) Tube holder mounted in a microscope stage adapter plate. Sliders on the side hold the tube securely for imaging. (C) Stage adapter with the tube holder and side panels added containing heating strips connected to a thermoelectric temperature controller. Once tubes are mounted and positioned, a solid top to the box can be added to help maintain the temperature during imaging. Orange wire is the thermocouple lead. Plans for the design and building of the stage adapter and heater are available at: https://vpr.colostate.edu/min/custom-machining/roller-tube-holder/. Please click here to view a larger version of this figure.
Figure 6: Using fiducial marks for repetitive imaging of same cells. (A) Hippocampal slice on photoetched coverslip (1 mm squares) with subiculum unfolded (tail) viewed with 4x objective and bright field illumination. Curvature of plastic roller tube helps create an oblique illumination that enhances the visualization of the grid. The box shows the position and size of a 60X field. (B) A view of the same slice with a 20x objective for finding the fiducial mark as the tip of the bottom of the 4 from square 34. The y and x offsets are shown to reproducibly locate the center of the desired box for higher magnification confocal imaging. (C–F) A slice labeled with neuronal vital dye 13 DIV was imaged using a 60x objective and making a 30 µm projection image on 4 consecutive days (14-17 DIV). Identical neurons were imaged each day. The position of the nucleus in each of three neurons is marked with a different symbol. They are more easily identified by scrolling through image stacks as their 3D position changes slightly. Please click here to view a larger version of this figure.
Figure 7: Imaging neurons in slices with a neuronal vital dye. (A) Neuronal vital dye stained slice in plasma clot taken 24 h after plating with 4X objective. Dye (100 nM) was added when the slice was first placed in the roller tube holder and washed out 2 h later. Subiculum is curled around the hippocampus in the clot. (B–E) Following clot dissolution by plasmin added at 6 DIV, the slice was reloaded 5 times with the vital dye 24 h in advance of imaging at weekly intervals. Images shown were collected at 8, 21, 28, and 35 DIV (B–E, respectively). (F) Hippocampal slice cultured for 3 weeks and stained with neuronal vital dye 24 h in advance of imaging with 4X objective. (G) Confocal stack of images on the same slice as in F showing a 3D view of 61 planes taken at 1 µm intervals. Neuronal vital dye clearly labels both neurites and cell body but it is excluded from the nucleus. Please click here to view a larger version of this figure.
Figure 8: Repetitive imaging of neurons in a single location of the slice over 4 weeks. Maximum projection images of 30 µm confocal image stacks of the same field of cells (by positioning) from vital dye-labeled slices taken at 12, 20, 30, and 40 DIV (A–D, respectively). It is difficult to repetitively identify individual cells over the longer time frames in projection images. However, even over these long periods, identification of the same cells is often possible by scrolling through the image stacks or building 3D images that can be rotated, such as shown in Figure 7G. Please click here to view a larger version of this figure.
Figure 9: Viral-mediated expression and imaging of fluorescent proteins. (A) Hippocampal slice cultured for 9 weeks and infected with adenovirus for expressing cofilin-mRFP behind a CMV promoter. Expression was found throughout the slice at 5 days post-infection but fluorescence was brightest near the slice periphery. (B) Same slice showed expression in cells deeper within the slice when viewed with 20X objective. Image is a projection from a stack of 20 images spaced 2 µm apart. (C) The same slice was examined after 17 weeks in culture (8 weeks post-infection) and cofilin mRFP was observed in rod shaped aggregates as seen in this projection image from a 70 µm stack of 23 images, 3 µm apart, taken with a 40X objective. (D–F) Mouse hippocampal slice infected at 9 weeks in culture with an AAV expressing a GCaMP5-(P2A)-cofilin-mRFP behind a synapsin promoter. Fluorescence was visible in both red and green channels after 10 days. A single plane image of the slice showing the expression of (D) GCaMP5, a calcium sensitive reporter, (E) many cofilin-containing rods, and (F) an overlay image. Please click here to view a larger version of this figure.
Figure 10: Expression of cofilin-R21Q-mRFP driven by a synapsin promoter in neurons infected with recombinant lentiviral vectors. Detection of a weak fluorescence signal is first observed by about 3-4 days post-infection using 10 µL of virus and becomes usable by 5-6 days, (E) as seen in these images acquired with a 60x objective. Although it takes longer to achieve the same levels of expression with 1 µL of virus, by 8 days post-infection a similar high percentage of neurons (vital dye labeled) were expressing the cofilin-R21Q-mRFP. Only 27% of neurons were positive for mRFP fluorescence at 6 days post-infection with 1 µL (A, B) but this increased to 85% (C, D) by 8 days. Please click here to view a larger version of this figure.
Figure 11: Aβ oligomer-induced cofilin pathology in mouse hippocampal slices. All images taken as 30 µm image stacks with a 60x objective and are shown as maximum projection images. Slices were infected with cofilin-R21Q-mRFP at 6 DIV. (A) 15 DIV slice treated on 14 DIV with vehicle (DMSO/HAMS F12 medium used to generate Aβo). (B) Slice 15 DIV treated with 100 nM Aβo. (C) Same field as in B taken at 20 DIV and shown in (D) as an overlay with neuronal vital dye label. Arrows show linear arrays of cofilin aggregates and rods in the region of the slice containing neurites but few cell bodies. Please click here to view a larger version of this figure.
The roller tube method described here allows for long-term culturing and high-resolution live imaging of sliced brain tissue. One major issue with the slice technique as applied here is in the mounting and maintenance of slices. Coverslip coatings that support slice adhesion, promote slice thinning by enhancing the outgrowth of neurites and migration of cells out of the slice; thus, we avoided the use of these substrates. The insertion of amino groups onto the glass by treatment with 3-aminopropyltriethoxysilane improved the adherence of slices, but too little or too much chicken plasma on the coverslip can also cause adherence problems leading to slice loss. The volume of plasma needed for proper adhesion is dependent on the size of the cultured brain slice, and thus is greater for rat hippocampal slices, which are about 4 times larger in area than mouse brain slices. If too much plasma clots under the slice, cell adhesion to the coverslip is impaired and treatment with plasmin will loosen the slice so that it either changes position or detaches completely. However, too little plasma in the clot may lead to slice loss during the first few days of rotation in the incubator. In a recent experiment involving 39 slices, three were lost but some of those lost may have resulted from slice damage occurring during the slicing process. Nevertheless, we usually prepare about 50% more slices than the estimated number needed for the experiment. The second leading cause of culture problems is leakage of medium around the coverslip seal. This problem worsens when coverslips are not held firmly in position for at least 1 min after affixing them to the seal. Heat from the thumb used to apply pressure most likely helps complete the adhesion. Leakage that does occur is often through tiny air channels under the coverslip that can be observed with a dissection microscope. These usually disappear upon using prolonged thumb pressure. Loss of about 2% of cultures due to slow leakage can be expected and thus it is recommended to wait 10 days after setting up the cultures before performing viral infections. Excessive thumb pressure, especially if produced unevenly across the coverslip, can also cause the coverslip to crack. If breakage is an issue, pressing the tubes down flat onto a rubber mouse pad warmed in an incubator might help to provide more even pressure across the coverslip.
Previously described methods for brain slice culture on membranes at the air-liquid interface (open system) or on a glass coverslip inside of a sealed plastic tube (closed system) are very effective for long-term slice survival, but each method has its strengths and weaknesses. Slice cultures on membranes at the air liquid interface are advantageous for combined electrophysiological studies with immersion objectives for high-resolution imaging7, but have drawbacks with regard to finding the exact field of cells for reimaging over time and potential user exposure and objective contamination when using viral-mediated gene expression. Use of viruses for expression of transgenes is safer and easier to perform in a closed system where contamination of microscope objectives is not an issue. Our modified roller tube method gives access of the slice for high-resolution imaging, although it is not amenable to electrophysiological studies.
Slice culture conditions have been established for many regions of the rodent brain2, but here we utilize only hippocampus because it is one of the most widely studied brain regions and changes that occur in the hippocampus are of great interest in studies of cognitive impairment. The pyramidal cell layers of the CA and DG regions maintain their organization over several weeks in culture and can be readily observed morphologically. We have utilized a newly developed fluorescent neuronal viability marker25, which has fluorescence properties that allow it to be used to monitor neuronal viability and organization within hippocampal slices over periods of days to months but also is compatible with the use of many other fluorescent proteins and reporters. Although not optimal for NeuO fluorescence25, we can excite at NeuO at 488 nm and measure emission at >617 nm. Fiducial marks on the photoetched coverslips helped locate the same cells repetitively over many days of culture and allowed us to image identical regions of the slices over many weeks. Virtually no significant thinning of the slices occurred on the modified glass coverslips during 5 weeks in culture, the longest time point for which we obtained slice thickness measurements.
AV, AAV, and recombinant lentivirus vectors work well for expressing exogenous genes in slices. Lentivirus with a neuronal specific promoter is particularly useful for obtaining expression in a very high percentage (> 85%) of neurons within 8 days post-infection. Furthermore, we show that the cofilin-actin rod pathology associated with development of cognitive deficits in human AD10,11 and Aβ overexpressing mouse AD models32 can be monitored in slice cultures treated with relatively low concentrations (100 nM) of synthetic human Aβo. We envision that future applications of this method will include characterizing new therapeutics to reverse cofilin-actin rod pathology and/or correct dendritic spine abnormalities that occur in many neurological disorders33.
Bottoms from 15 cm culture dishes | VWR Scientific | 25384-326 | |
Phillips Head Machine Screws (#10-32) | Ace Hardware | 2.5" long and 3/16" in diameter | |
Flat Washers #10 | ACE Hardware | ||
Machine Screw Nuts (#10-32) | ACE Hardware | ||
Rubber Grommets | ACE Hardware | 5/16", thick; 5/8", hole diameter; 1.125", OD | |
Polyethylene tubing (5/16"; OD, 3/16"; ID) | ACE Hardware | Cut to 1.8" length | |
Lock Washer #10 | ACE Hardware | ||
Drill Press, 5 speed | Ace Hardware | ProTech Model 1201 | |
Nunclon Delta Flat-Sided Tubes | VWR | 62407-076 | |
Drill bits, 3 mm, 6 mm and 15 mm | Ace Hardware | Diablo freud brand | Drill bits for cutting plastic. |
Drill bits for wood, 1.5 cm and 1 mm | Ace Hardware | ||
Wood file, 1/4" round | Ace Harware | ||
Spring clips, 16 mm snap holder | Ace Hardware | ||
Swivel Head Deburring Tool, 5" | Ace Hardware | 26307 | |
Adhesive Silicone Sheet (Secure Seal) | Grace Bio-Labs | 666581 | 0.5 mm Thickness |
6 mm hole punch | Office Max | ||
12 mm hole punch | thepunchbunch.com | ||
70% Ethanol | |||
Phototeched Coverslips, 12 mm diameter | Bellco Glass, Inc. | 1916-91012 | |
Bunsen Burner | |||
Absolute Ethanol | |||
Nanopure Water | |||
3-aminopropyltriethoxylane | Sigma-Aldrich | A3648 | |
Acetone | Sigma-Aldrich | 179124 | |
#5 Dumont Forceps | Fine Science Tools | 11251-30 | |
McIlwain Tissue Chopper | Ted Pella, Inc. | 10180 | |
Double Edge Razor Blades | Ted Pella, Inc. | 121-6 | |
Whatman Filter Paper | VWR | 28450-182 | Cut into 5.8 cm diameter circles |
Poly-chloro-trifluoro-ethylene (Aclar) | Ted Pella, Inc. | 10501-10 | Cut into 5.8 cm diameter circles |
#21 Surgical Blade | VWR Scientific | 25860-144 | |
#5 Dumont Forceps | Fine Science Tools | 11251-30 | |
Spatula, stainless with tapered end | VWR | 82027-518 | |
Gey's Balanced Salt Solution | Sigma-Aldrich | G9779 | |
Glucose | ThermoFisher Scientific | 15023-021 | 25% (w/v) Solution, 0.2 mm filter sterilized |
Chicken Plasma | Cocalico Biologicals | 30-0300-5L | Rehydrate in sterile water, centrifuge at 2500 x g 30 min at 4 °C, quick freeze aliquots in liquid nitrogen and store at -80 °C. |
Thrombin, Bovine | Fisher | 60-516-01KU | 150 units /ml in GBSS/Glucose, quick freeze aliquots in liquid nitrogen and store at -80 °C. |
Cell Roller System | Bellco Biotech | SciERA | |
Roller Incubator | Forma | Model 3956 | |
N21-MAX | ThermoFisher Scientific | AR008 | |
Pen/Strep (100X) | ThermoFisher Scientific | 15140122 | |
200 mM Glutamine | ThermoFisher Scientific | 25030081 | |
Glucose | ThermoFisher Scientific | 15023-021 | 25% (w/v) Solution, 0.2 mm filter sterilized |
Neurobasal A | ThermoFisher Scientific | 10888-022 | Complete Medium: 48 mL Neurobasal A, 1 mL N21-MAX, 0.625 mL 200 mM Glutamine, 0.180 mL 25% Glucose, 0.250 mL 100x pen/strep. |
Third generation lentivirus packaging | Life Technologies | K4975-00 | |
159 K cutoff centrifugal filters (Centricon) | EMD Millipore | ||
Lentiviral cloning system (InFusion) | Clonetech | ||
Plasmids 30323, 50856, 51279 | Addgene | ||
Neuronal cell viability dye (NeuO) | Stemcell technologies | 1801 | Thaw once and quick freeze in 4 µL aliquots. Store at -20 °C |
Inverted microscope | Olympus | IX83 | |
Microscope objectives | Olympus | air: 4X, 20; oil: 40X, 60X, | |
Spinning disc confocal system | Yokagawa | CSU22 | |
Microscope EMCCD camera | Photometrics | Cascade II | |
Linear encoded (x,y), piezo z flat top stage | ASI | ||
Microscope lasers and integration | Intelligent Imaging Innovations | ||
HEK293T cells | American Type Culture Collection | CRL-3216 | |
Human Plasmin | Sigma Aldrich | P1867 | 0.002 U/mL in 0.1% bovine serum albumin (0.2 mm filter sterilized), quick freeze in liquid nitrogen and store at -80 °C. |