We described in detail two chemical-based protocols for culturing mouse embryonic stem cells. This new method utilizes synergistic mechanisms of promoting Tet-mediated oxidation (by vitamin C) and repressing de novo synthesis of 5-methylcytosine (by PD0325901) to maintain DNA hypomethylation and pluripotency of mouse embryonic stem cells.
Embryonic stem (ES) cells have the potential to differentiate into any of the three germ layers (endoderm, mesoderm, or ectoderm), and can generate many lineages for regenerative medicine. ES cell culture in vitro has long been the subject of widespread concerns. Classically, mouse ES cells are maintained in serum and leukemia inhibitory factor (LIF)-containing medium. However, under serum/LIF conditions, cells show heterogeneity in morphology and the expression profile of pluripotency-related genes, and are mostly in a metastable state. Moreover, cultured ES cells exhibit global hypermethylation, but naïve ES cells of the inner cell mass (ICM) and primordial germ cells (PGCs) are in a state of global hypomethylation. The hypomethylated state of ICM and PGCs is closely associated with their pluripotency. To improve mouse ES cell culture methods, we have recently developed a new method based on the selectively combined utilization of two small-molecule compounds to maintain the DNA hypomethylated and pluripotent state. Here, we present that the co-treatment of vitamin C (Vc) and PD0325901 can erase about 90% of 5-methylcytosine (5mC) at 5 days in mouse ES cells. The generated 5mC content is comparable to that in PGCs. The mechanistic investigation shows that PD0325901 up-regulates Prdm14 expression to suppress Dnmt3b (de novo DNA methyltransferase) and Dnmt3l (the cofactor of Dnmt3b), by reducing de novo 5mC synthesis. Vc facilitates the conversion of 5mC to 5-hydroxymethylcytosine (5hmC) catalyzed mainly by Tet1 and Tet2, indicating the involvement of both passive and active DNA demethylations. Moreover, under Vc/PD0325901 conditions, mouse ES cells show homogeneous morphology and pluripotent state. Collectively, we propose a novel and chemical-synergy culture method for achieving DNA hypomethylation and maintenance of pluripotency in mouse ES cells. The small-molecule chemical-dependent method overcomes the major shortcomings of serum culture, and holds promise to generate homogeneous ES cells for further clinical applications and researches.
ES cells are originated from the ICM of a blastocyst1. The cells are in a pluripotency state and can form all somatic lineages and germline cells2. Establishment of ES cells provides the opportunity to investigate the development processes in vitro and can generate cells of medical relevance for regenerative medicine based on their pluripotency3.
Two groups seminally established the mouse ES cell lines in 1981 and when cells derived from the early mouse embryo were cultured in fetal bovine serum (FBS)-containing medium with mouse embryonic fibroblasts (MEFs) as the feeder layer1,4. MEFs were inactivated mitotically and were pre-grown in dishes prior to culturing ES cells. MEFs provide support for mouse ES cell attachment and produce growth factors to promote propagation and repress the differentiation5, while FBS offers essential trophic factors and hormones for cell proliferation. Subsequent studies indicated that LIF produced by feeder cells was the key cytokine for self-renewal and maintenance of pluripotency in mouse ES cells, and the addition of LIF into the medium could substitute for feeder cells6. Currently, the sustainment of mouse ES cells in FBS/LIF medium on feeders is still the standard method adopted by many researchers. However, some problems arise with this classical culture approach. Firstly, feeder cells secrete excess and uncontrolled factors and may cause pathogenic contamination7. To avoid this interference, coating the surface of dishes with gelatin and the addition of LIF in serum-containing medium are alternative methods for maintaining mouse ES cells without feeder-layer cells. Additionally, mouse ES cells grown under serum/LIF conditions exhibit morphological heterogeneity in cell populations and even in the expression level of pluripotency-related factors8. Recent studies suggest that under serum/LIF conditions, the pluripotency-related core transcription factors (including SOX2, Nanog, and OCT4) can sustain the pluripotency through LIF and WNT signaling; however, notably, they also activate a fibroblast growth factor (FGF) signal to trigger differentiation8. Due to the ambivalent dual action of the core transcription factors, mouse ES cells cultured in serum present heterogeneity, consisting of two interchangeable populations, one similar to ICM and another resembling the primed epiblast state8. Moreover, mouse ES cells in serum often exhibit global hypermethylation9, whereas ICM and PGCs are in a global hypomethylated state, which is closely linked with their pluripotency9,10.
There is a considerable demand to develop new methods for culturing mouse ES cells. Several improved protocols have been established since 200311 but there continues to be some limitations and shortcomings7. Since 2008, the combined utilization of two small-molecule kinase inhibitors, PD0325901 (the inhibitor of the mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) (MEK)) and CHIR99021 (the inhibitor of glycogen synthase kinase 3 (GSK3)), in N2B27 medium with LIF and without serum has opened new perspectives for culturing mouse ES cells12. This new defined medium is characterized by the use of two inhibitors (2i). Mouse ES cells cultured in 2i/LIF medium are more homogeneous in cell populations and the expression of pluripotency factors. In addition, 2i/LIF-cultured mouse ES cells exhibit DNA hypomethylation globally, which is closer to ICM-like cells9,13. Even so, 2i culture has its disadvantages. PD0325901 and CHIR99021 are insoluble in water and generally are dissolved in dimethyl sulfoxide (DMSO)-based stock solution to add them in culture medium. Studies have showed that long-term and low-dose exposure of cells to DMSO can lead to cytotoxicity14.
Here, we utilized two small-molecule compounds and developed a new culture method of mouse ES cells. The novel culture method combines Vc and MEK inhibitor PD0325901 to promote DNA hypomethylation rapidly and effectively to a comparable level of PGC, named as the Vc/PD0325901 culturing protocol. Mouse ES cells in Vc/PD0325901-added serum-containing medium exhibit homogeneity in morphology and are sustained in a ground state. Compared to 2i culture, mouse ES cells cultured under Vc/PD0325901 conditions exhibit faster kinetics of DNA demethylation and can reach the hypomethylation level comparable to that of PGC. In addition, the use of a single inhibitor (PD0325901) decreases the input amount of DMSO into medium in comparison to that used in 2i (PD0325901/CHIR99021) and reduces the damage to cells.
1. Preparations
2. Grow Mouse ES Cells on Gelatin-coated Dishes
3. Freeze and Thaw Mouse ES Cells
4. Extract Total Protein from Cells
5. Extract DNA from Cells and Digest DNA into a Single Nucleoside Using Enzymes
6. Analyze 5mC and 5hmC Using UHPLC-MS/MS15
7. Analyze the Statistical Significance
Vc/PD0325901 synergistically induced global erasure of mouse ES cells. Mouse ES cells in serum exhibit DNA hypermethylation, while pluripotent ICM cells and PGCs show global erasure of DNA methylation and the hypomethylated state is closely associated with their pluripotency9,10.
Previously, we and others found that Vc may enhance Tet-mediated 5mC demethylation15,17. Meanwhile, 2i was also found to inhibit de novo synthesis of 5mC. In the context of these findings, we further proposed the synergistic manipulation of mouse ES cells using Vc and 2i together. After the analysis of UHPLC-MS/MS, we found that Vc and 2i supplemented in the serum-containing medium can dramatically reduce the 5mC content from 3.2 to 0.33 per 100 C (~90% 5mC loss) by day 11 in mouse ES cells (Figure 1A). In contrast, Vc or 2i-treatment alone only caused 58% erasure with the steady level at 1.4% 5mC or 61% reduction at the level of 1.3% 5mC.
The 2i medium is composed of MEK inhibitor PD0325901 and GSK3β inhibitor CHIR99021. Next, we investigate which component induces the global loss of 5mC during the co-treatment of Vc and 2i. Interesting, Vc/PD0325901 caused a faster decline in levels of DNA methylation than Vc/2i. Vc/PD0325901 achieved steady 5mC levels (~0.33% 5mC) after 5 days, while Vc/2i reached a comparable level at day 11. In contrast, the supplement of CHIR99021 partly suppressed Vc-triggered DNA demethylation (Figure 1A). These data clearly suggest that PD0325901 in 2i contributes to the global hypomethylation of genomic DNA in mouse ES cells, while CHIR99021 of 2i partially inhibits the erasure of 5mC. Therefore, we speculate that the faster DNA demethylation induced by Vc/PD0325901 relative to Vc/2i may be attributed to the partial inhibition of CHIR99021 on demethylation.
We hypothesized that the global erasure of 5mC in mouse ES cells induced by Vc/PD0325901 may be partially pertinent to the enhancement of DNA demethylation. Hence, we examined genomic oxidation products of 5mC. It has been reported that 5mC can be converted to 5hmC by the catalytic oxidation of Tet family dioxygenases, which are dependent on Fe (II) and 2-oxoglutarate18,19. Genomic 5hmC may be diluted by DNA replication20. Furthermore, 5hmC can be further oxidized by Tet dioxygenases to produce 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be efficiently excised by thymine DNA glycosylase (TDG) to recover unmethylated cytosine, indicating an active DNA demethylation21,22.
In line with previous work15, Vc-containing treatment (Vc, Vc/2i, Vc/PD0325901, Vc/CHIR99021) dramatically increased 5hmC frequency (5hmC/106 C) after 1 day, and thereafter 5hmC levels declined gradually (Figure 1B) due to the progressively reduction in 5mC substrate. Notably, Vc/PD0325901 and Vc/2i showed faster kinetics of 5hmC loss in comparison to Vc and Vc/CHIR99021 owing to the faster reduction of 5mC. In addition, we also observed that at day 1, Vc-treatment stimulated more generation of 5hmC compared with Vc/CHIR99021, indicating that CHIR99021 partly suppressed the Vc-induced production of 5hmC and inhibited DNA demethylation. 5hmC loss in 2i treatment should be attributed to the decrease of the 5mC substrate. Taken together, these results showed that Vc-enhanced DNA demethylation activity partly contributed to the synergistically hypomethylation in co-treatment of Vc/PD0325901 and Vc/2i.
Both Habibi et al.23 and von Meyenn et al.24 also reported that mouse ES cells under 2i conditions showed global DNA hypomethylation and naïve pluripotency. 5mC levels showed decline gradually and reached a steady state (~1% 5mC) at 12–14 days after the reversion from serum to 2i. In the Vc/PD0325901 culture system, the co-treatment caused faster DNA demethylation and reached a stable level (0.33% 5mC) after supplementation of Vc/PD0325901 in serum medium for 5 days, due to the synergistic effect of Vc/PD0325901. The reached methylated level (0.33% 5mC) was pronouncedly lower than that under 2i conditions reported by Habibi et al. and von Meyenn et al., while 5hmC levels were higher due to the promoted generation of Vc.
PD0325901 elevated Prdm14 expression to repress Dnmt3b and Dnmt3l, but not Dnmt3a25. To investigate the action of PD0325901 in inducing 5mC loss, a series of 5mC-related protein expression was examined, including the maintenance (Dnmt1) and de novo (Dnmt3a, and Dnmt3b) DNA methyltransferases and their cofactor (Uhrf1 and Dnmt3l) and regulation protein (Prdm14) 8,9,26. After Western blot analysis, Prdm14 was pronouncedly elevated in PD0325901-including culture (Figure 2). In contrast, Dnmt3b and its cofactor Dnmt3l showed considerable down-regulation of protein expression in PD0325901-including treatment (Figure 2). CHIR99021 treatment showed no or slight effect on the level of Prdm14, Dnmt3b, and Dnmt3l. The expression of Dnmt3awas did not change and the cause is unclear. In addition, the maintenance DNA methyltransferase Dnmt1 and its targeting factor Uhrf1 also showed no alteration and the data were not shown.
Recent studies have indicated that Prdm14 can recruit polycomb repressive complex 2 (PRC2) to some gene promoters to repress their expression, such as de novo DNA methyltransferases (Dnmt3a and Dnmt3b) and their cofactor (Dnmt3l), and contributes to maintaining hypomethylation under 2i conditions8,27. Our data revealed that PD0325901 elevated the expression level of Prdm14 to inhibit Dnmt3b and Dnmt3l and reduced de novo genomic 5mC synthesis by the mechanism.
To explore the pluripotency maintenance of mouse ES cells under Vc/PD0325901 conditions, mRNA expression levels of several core pluripotency-linked factors were examined, and these factors have been confirmed to play vital roles in pluripotency28. Real-time PCR analysis found that Oct4, SOX2, Esrrb, and Sall4 showed uniform expression levels through 5 days of treatment with Vc/PD0325901 in contrast to serum culture (Figure 3A). Nanog and Tcf3 increased 1.3-fold and 1.6-fold, respectively. By contrast, Klf4 showed 42% down-regulation and Rex1 only decreased by about 12%. These results suggest that Vc/PD0325901 co-treatment induced diverse alterations in expression of pluripotency factors; however, Oct4 and SOX2, the most core factors, kept almost constant levels of expression.
Next, an alkaline phosphatase (AP) assay was performed to assess whether mouse ES cells were in an undifferentiated or differentiated state. Photos of cells (Figure 3B and 3C) were obtained from a camera connected to an inverted microscope with 10-fold amplification by an objective lens. After continuous cultivation of 26 days in Vc/PD0325901-added serum medium, the mouse ES cells showed homogeneous morphology. Furthermore, almost all cells were stained purple-black and exhibited a ball-like state without outgrowth (Figure 3C), showing an undifferentiated state. By contrast, under serum conditions, a portion of the mouse ES cells at day 26 were purple-black after staining and had a ball-like state in morphology, while others presented light color with outspreading marked by white dashed oval lines (Figure 3B); this indicated that the serum-cultured mouse ES cells were heterogeneous in morphology and in a pluripotent state, which is consistent with previous reports13. Collectively, the data supported that PD0325901 in combination with Vc can sustain excellent morphology and an undifferentiated state in the mouse ES cells.
Figure 1: Vc/PD0325901 synergistically induced global erasure of genomic 5mCin mouse ES cells. (A) 5mC frequency (5mC/C) and (B) 5hmC frequency (5hmC/C) time-dependent change during a 26-day treatment of a continuous supplement with Vc, 2i, Vc/2i, Vc/PD0325901, or Vc/CHIR99021 in serum-containing medium. Error bar shows the standard deviation (SD) from three repeated analyses by UHPLC-MS/MS. C: cytosine. This figure has been modified from Li et al.25. Please click here to view a larger version of this figure.
Figure 2: The protein expression alteration of Prdm14 and DNA methyltransferases (Dnmt3a, Dnmt3b, and Dnmt3l). The presented bands (from left to right) were obtained through a 5 day-treatment of serum culture (Control), Vc, PD0325901, CHIR99021, 2i, Vc/PD0325901, Vc/CHIR99021, and Vc/2i, respectively. The expression of Prdm 14 was up-regulated and Dnmt3b and Dnmt3l decreased after PD0325901-including culture. Dnmt3a exhibited no change. β-tubulin was set as the internal reference. Con: Control; PD: PD0325901; CH: CHIR99021. This figure has been modified from Li et al.25. Please click here to view a larger version of this figure.
Figure 3: Vc/PD0325901-induced alteration in mRNA expression of pluripotent genes and in the activity of alkaline phosphatase. (A) The mRNA level of partial pluripotent genes was changed through a 5 day treatment of Vc/PD0325901 relative to that under serum conditions (Control). Data were represented as mean ± SD. The statistical significance was evaluated and p <0.05 was statistically significant. *p <0.05, **p <0.01, ***p <0.001, and ns represented non-significant. PD: PD0325901. Mouse ES cells in serum for 26 days (B) exhibited partial outgrowth marked by white dashed oval lines, while Vc/PD0325901-added serum medium maintained great morphology and an undifferentiated state (C). These images were acquired from an inverted microscope connected with a camera in the bright field. This figure has been modified from Li et al.25. Scale bars = 100 µm. Please click here to view a larger version of this figure.
In the work, we demonstrated a novel method of combining Vc and PD0325901 to sustain mouse ES cells at an undifferentiated and hypomethylated state, which was achieved by a synergistic action of promoting DNA demethylation by Vc and suppressing de novo DNA methylation by PD0325901. Moreover, mouse ES cells showed great morphology under the Vc/PD0325901 culture system.
To better sustain the state of mouse ES cells in the Vc/PD0325901 culture system, there are some critical steps. Firstly, FBS batches need to be pre-screened to find and stock the best batches; also, frequent replacement of serum is detrimental to cell proliferation and to the maintenance of pluripotency. Secondly, avoid over pipetting cells during the dissociating of the cell colonies to a single cell suspension in the cell passage stage. Thirdly, to attenuate the adverse effect of trypsin during the cell cultivation, the trypsin should be removed immediately after it covers the cells in the dishes during cell passaging. Additionally, the Vc/PD0325901 culture medium should be replaced daily due to the instability of Vc.
In comparison with the classical serum culture, mouse ES cells under Vc/PD0325901 conditions show a more homogeneous cell population (Figure 3B, C) and a hypomethylated state, which resembles ICM and PGC. In addition, compared with the recently developed 2i culture, our method can realize the hypomethylation with faster kinetics, and the utilization of a single inhibitor (PD0325901) reduces the input amount of DMSO, thus decreasing the damage to cells. However, due to the addition of FBS in our culture system, the ambivalent dual actions of FBS may cause cell differentiation during long-term culture. Overall, this novel culture system is suitable for the maintenance and expansion in large scale of mouse ES cells.
The authors have nothing to disclose.
This work was supported by the National Natural Science Foundation of China (21435008 and 21327006 to H.W.), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14030200 to H.W.).
fetal bovine serum Australia source | Corning | 35-076-CV | Component of mouse ES cell medium |
DMEM/high glucose | Hyclone | SH30022 | Component of mouse ES cell medium |
LIF | Millipore | ESG1107 | Component of mouse ES cell medium |
non-essential amino acids (NEAA) | Gibco | 11140050 | Component of mouse ES cell medium |
sodium pyruvate | Gibco | 11360070 | Component of mouse ES cell medium |
L-glutamine | Gibco | 25030081 | Component of mouse ES cell medium |
penicillin streptomycin solution | Gibco | 15140122 | Component of mouse ES cell medium |
PBS | Sigma | P5493 | Cells rinse |
trypsin | Hyclone | SH30042 | Cell dissociation |
gelatin | Sigma | 48722 | Dishes coating |
PD0325901 | Stemolecule | 04-0006-10 | small-molecule chemical for cell culture |
CHIR99021 | Stemolecule | 04-0004 | small-molecule chemical for cell culture |
vitamin C | Sinopharm Chemical Reagent Co.,Ltd | XW00508171 | small-molecule chemical for cell culture |
Ultra Bioscience water purification systemr | Purelab | Ultra | Ultra water |
DMSO | Sigma | D8418 | Cell freezing medium |
centrifuger | Eppendorf | 5427R | DNA and protein extraction |
protease inhibitor cocktail | Sigma | P8340 | Component of RIPA buffer |
PMSF Protease Inhibitor | ThermoFisher Scientific | 36978 | Component of RIPA buffer |
DTT | Sigma | 43815 | Component of RIPA buffer |
EGTA | Sigma | E3889 | Component of RIPA buffer |
Genomic DNA Purification Kit | Promega | A1125 | Genomic DNA extraction |
NanoDrop 2000 | ThermoFisher Scientific | NanoDrop 2000 | Determination of DNA concentration |
calf intestinal phosphatase | New England Biolabs | M0290 | DNA digestion |
DNase I | New England Biolabs | M0303 | DNA digestion |
snake venom phosphodiesterase I | Sigma | P4506 | DNA digestion |
Nanosep 3K Omega | Pall | OD003C35 | filtration of digested DNA |
1290 UHPLC system | Agilent | 1290 | UHPLC separation |
G6410B triple quadrupole mass spectrometer | Agilent | G6410B | MS/MS analysis |
Zorbax Eclipse Plus C18 column | Agilent | Zorbax Eclipse Plus | colume for UHPLC separation |
5-methylcytosine | Solarbio Life Sciences | SM8900 | standard 5mC |
5-hydroxymethylcytosine (standard) | Toronto Research Chemicals | M295900 | standard 5hmC |
Prdm14 antibody | bioworld | BS7634 | Western blot analysis-primary antibody |
Dnmt3a antibody | bioworld | BS6587 | Western blot analysis-primary antibody |
Dnmt3b antibody | abcam | ab13604 | Western blot analysis-primary antibody |
Dnmt3l antibody | abcam | ab3493 | Western blot analysis-primary antibody |
Dnmt1 antibody | abcam | ab13537 | Western blot analysis-primary antibody |
β-tubulin antibody | bioworld | BS1482MH | Western blot analysis-primary antibody |
goat anti-rabbit IgG | abcam | ab6721 | Western blot analysis-secondary antibody |
goat anti-mouse IgG | abcam | ab6789 | Western blot analysis-secondary antibody |
Trizol | Invitrogen | 15596-026 | RNA extraction |
reverse transcription system | Promega | A3500 | RNA reverse transcription |
GoTaq qPCR Master Mix | Promega | A6001 | RT-PCR |
StemTAG alkaline phosphatase staining and activity assay kit | Cells Biolabs, Inc. | CBA-302 | alkaline phosphatase staining analysis |
mouse ES cells: WT, 129 SvEv | Provided by Professor Guoliang Xu (Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China) | cell strain of mouse ES cells | |
microscope | Zeiss | LSM510 | cells observation |
GraphPad Prism 5.0 | GraphPad Prism Software Inc. | 5.0 | statistical analysis |