Cells display different morphologies and establish a variety of interactions with their neighbors. This protocol describes how to reveal the morphology of single cells and to investigate cell-cell interaction by using the well-established Gal4/UAS expression system.
Cells display different morphologies and complex anatomical relationships. How do cells interact with their neighbors? Do the interactions differ between cell types or even within a given type? What kinds of spatial rules do they follow? The answers to such fundamental questions in vivo have been hampered so far by a lack of tools for high resolution single cell labeling. Here, a detailed protocol to target single cells with a MultiColor FlpOut (MCFO) technique is provided. This method relies on three differently tagged reporters (HA, FLAG and V5) under UAS control that are kept silent by a transcriptional terminator flanked by two FRT sites (FRT-stop-FRT). A heat shock pulse induces the expression of a heat shock-induced Flp recombinase, which randomly removes the FRT-stop-FRT cassettes in individual cells: expression occurs only in cells that also express a GAL4 driver. This leads to an array of differently colored cells of a given cell type that allows the visualization of individual cell morphologies at high resolution. As an example, the MCFO technique can be combined with specific glial GAL4 drivers to visualize the morphologies of the different glial subtypes in the adult Drosophila brain.
Glia, the non-neuronal cell population of the nervous system (NS), were long believed to provide a static framework for neurons and therefore were not studied in detail. However, in humans, glia constitute the vast majority of cells in the NS (~90%) and fall into several different categories, including astrocytes, oligodendrocytes, microglia and Schwann cells. In Drosophila, glia constitute about 10% of the cells in the NS. Intriguingly, their morphologies and functions are remarkably similar to those found in vertebrates1,2. Their morphologies include blood-brain barrier (BBB) forming epithelia, ensheathing, and astrocyte-like cells.
The Drosophila central nervous system (CNS) consists of the following principal structures: cortex regions that contain the neuronal cell bodies; neuropils that harbor synaptic connections; small and large axon tracts that connect the different neuropiles; peripheral nerves that connect sensory organs and muscles with the CNS (Figure 1). Glia are found associated with all these anatomical structures: Cortex glia (CG) in the cortical regions, astrocyte-like glia (ALG) and ensheathing glia (EG) in the neuropile regions, ensheathing glia are also associated with central axon tracts and peripheral nerves (EGN), and finally, two sheet-like glia, perineurial glia (PG) and subperineurial (SPG), which together form a contiguous layer that covers the entire NS (Figure 2).
Previous studies have shown that glia play important roles in the development of the NS; they monitor neuronal cell numbers by reacting to systemically circulating insulin-like peptides, provide trophic support to neurons, such as the astrocyte-neuron lactate shuttle, and eliminate dying neurons by phagocytosis3,4,5,6. In the mature NS, glia maintain the BBB, take up neurotransmitters and maintain ionic homeostasis, act as the major immune cells in the NS, since macrophages cannot breach the BBB, and modulate synaptic activity as well as animal behavior6,7,8,9,10,11.
Whether the different glial subtypes perform specialized functions remains an important open question. However, a systematic genome-wide analysis of glia, especially in the adult, has been hampered by a lack of appropriate genetic tools for their manipulation. Here, a method that allows the efficient and easy characterization of cell shapes to study complex cell-cell interactions is presented. This technique has been applied to characterize the morphology of the different glial subtypes in the adult Drosophila brain, but, depending on the specific GAL4 driver used, it could be adapted to study neurons12,13, any kind of intermingling cells, and in principle any tissue in any developmental stages.
1. Preparing Flies for MultiColor FlpOut (MCFO) Experiments
NOTE: The MCFO technique refers to a modified version of the so called Flp-mediated stop cassette excision (FlpOut). Transgenic MCFO flies carry a heat shock promoter (hsp)-Flp recombinase and different reporters under UAS control. Each reporter consists of a common backbone of a myristoylated (myr) super folder green fluorescent protein (sfGFP), in which 10 copies of an epitope tag (e.g., HA, FLAG or V5) have been inserted. The resulting non-fluorescent proteins are named "spaghetti monster GFPs" (smGFPs)14 and can be detected using specific antibodies against the different epitope tags.
2. Heat Shock
NOTE: Depending on the insertion site, the efficiency of the hsp-Flp may differ; therefore, the optimal heat shock time has to be optimized. For this protocol, a MCFO fly stock in which the hsp-Flp was inserted on the X chromosome has been used (see Table of Materials).
3. Dissection Preparation and Solutions
4. Adult Brain Dissection
5. Adult Brain Staining
6. Mounting of Brains for Imaging
7. Image Acquisition
This section illustrates examples of results that can be obtained by using the MCFO technique in the adult Drosophila brain. Figure 3 shows a schematic of the method. Three differently membrane-tagged reporters (myr-smGFP-HA, myr-smGFP-FLAG and myr-smGFP-V5) under UAS control are kept silent by a transcriptional terminator flanked by two FRT sites (FRT-stop-FRT). A heat shock pulse induces the expression of Flp recombinase which randomly removes the FRT-stop-FRT cassettes in individual cells. This leads to an array of differently colored cells of a given cell type, specified by the GAL4 driver used.
Overall, seven colors are possible. Figure 4 and Figure 5 show the single morphologies of EG and ALG cells in the Drosophila antennal lobe (AL), respectively. Increasing heat shock time induces an increased amount of labeled cells, depending on the type of GAL4 driver, therefore an initial optimization of the heat shock protocol is necessary. Figure 6 shows the labeling of EG in the Drosophila optic lobe (OL) with single MCFO reporters.
Figure 1: Anatomy of the adult Drosophila NS. The cortical regions (dotted gray areas) contain all of the neuronal and most of the glial cell bodies, while the neuropile regions (blue areas) contain the synaptic connections. Tract regions (dark blue)connect the different neuropiles. This figure has been modified from Kremer et al. (2017)18. Please click here to view a larger version of this figure.
Figure 2: Generic glial subtypes in the Drosophila CNS. A membrane-tagged GFP (UAS-mCD8-GFP) reporter driven by specific GAL4 drivers allows the visualization of the five generic glial subtypes (PG: perineurial glia, SPG: subperineurial glia, CG: cortex glia, ALG: astrocyte-like glia and EG: ensheathing glia). The neuropil regions (magenta areas) are detected with the presynaptic marker NC82 (BRUCHPILOT). At the bottom, cell counts for the different glial subtypes are also shown. Scale bar = 100 µm. Please click here to view a larger version of this figure.
Figure 3: Crossing scheme for the MCFO technique. Schematic of the MCFO technique. Homozygousvirgins carrying the MCFO cassette and the hsp-Flp (hsp-Flp; 10XUAS-FRT-stop-FRT-myr-smGFP-HA,10XUAS-FRT-stop-FRT-myr-smGFP-FLAG, 10XUAS-FRT-stop-FRT-myr-smGFP-V5) are crossed with specific homozygous GAL4 driver males. The F1 generation is then heat shocked. According to the number of FRT-stop-FRT cassettes randomly removed from the reporters, seven different colors are possible. Please click here to view a larger version of this figure.
Figure 4: Morphology of ensheathing glia (EG) in the antennal lobe (AL). Confocal z-stacks of Drosophila AL after wholemount immunostaining. (A) Morphology of AL detected with the presynaptic marker NC82 (BRUCHPILOT). (B-D) Stochastic labeling of EGcells induced by increasing heat shock times: 8 min (B), 8.5 min (C) and 10 min (D). The EG take on many different shapes and sizes, as they ensheath the surface of the AL. Neighboring EG cells cover distinct areas but partially interdigitate in regions of contact. Scale bar = 20 µm. HA: Human influenza hemagglutinin. Please click here to view a larger version of this figure.
Figure 5: Morphology of astrocyte-like glia (ALG) in the antennal lobe (AL). Confocal z-stacks of Drosophila AL after wholemount immunostaining. (A) Morphology of the AL detected with the presynaptic marker NC82 (BRUCHPILOT). (B-D) Stochastic labeling of ALG cells induced by increasing heat shock times: 8 min (B), 10 min (C) and 15 min (D). ALG show variable size and morphologies but cover largely non-overlapping areas. Scale bar = 20 µm. HA: Human influenza hemagglutinin. Please click here to view a larger version of this figure.
Figure 6: Morphology of ensheathing glia (EG) in the optic lobe (OL). Confocal z-stacks of Drosophila OL after wholemount immunostaining. (A-C) MCFO labeling with three stop-cassette reporters with HA, FLAG and V5 myr-smGFPs. Flp recombinase was induced by a 10 min heat shock at 37 °C. (A-C) Individual MCFO reporters and merge (D) are shown. Scale bar = 20 µm. HA: Human influenza hemagglutinin. Please click here to view a larger version of this figure.
This protocol describes an easy and efficient method to study the morphology of different cell types within a tissue of interest at high resolution. With the MCFO technique, multiple reporters with different epitope tags are used in combination for multicolor stochastic labeling (Figure 2). Similar to other methods such as Brainbow/Flybow15,16,17, MCFO increases the label diversity through marker coexpression, allowing the visualization of cell boundaries for cell-cell interaction studies. For example, with three reporters, seven potential marker combinations are possible. Compared to previous labeling methods, the MCFO technique shows a more precise and easy control of the cell labeling density17: Flybow 1.0 flies express a default marker that makes single cell labeling more difficult; Flybow 2.0 flies require the expression of two different Flp recombinases making the system more complicated.
Depending on the specific GAL4 driver used, the MCFO technique may be adapted to study any tissue at any developmental stage. Here, the technique has been applied to characterize the morphology of the generic glial subtypes in the adult Drosophila brain at high resolution. The multicolor labeling of single cells allows the visualization of the different boundaries and helps in understanding, for example, the spatial interaction between two adjacent cells; apart from the PNG and SPG cells, which are meant to form epithelia, all other glial subtypes show tiling, that is they minimize contact with their glial neighbors, while maximizing contact with the enveloped neuronal compartment (cell body, axons, dendrites, and synapses). They all send fine lamellipodial or filopodial processes not only into their local neighborhood but also into distant surroundings18.
For the success of this protocol, it is crucial to rear flies at 18 °C in order to avoid leakiness in the system. When dissecting and throughout the entire staining procedure, it is important to avoid any damage to the tissue for optimal staining results. Finally, two technical aspects have to be considered: the heat shock time defines the amount of cells in which the tags are expressed. A short heat shock will lead to labeling of a few cells, while a long heat shock will induce the expression of tags in many cells up to the extreme case in which all FRT-stop-FRT cassettes are removed from the reporters, in all cells. In this case, only one color (the merge of the three epitope tags) will be present, preventing the visualization of single cell morphologies. The heat shock time varies depending on the insertion site of the hsp-Flp and the GAL4 driver, therefore an initial optimization step may be necessary. The marker expression is random and cannot be targeted to a specific subpopulation of cells driven by the GAL4 driver. Within one cell, different tags can be expressed enabling the antibody staining of neighboring cells with different colors. However, occasionally, more than one tag is expressed in one cell leading to the overlap of the two colors.
The authors have nothing to disclose.
The authors thank Arnim Jenett, Aljoscha Nern, and other members of the Rubin laboratory for advice and sharing of unpublished reagents and the Janelia Fly Light Project Team for generating confocal images. The authors also thank the members of the Gaul laboratory for comments on the manuscript.
Water bath | Grant | GD100 | |
PCR tubes | Sarstedt | 72.737.002 | |
Forceps | Dumont | 11251-20 | |
Dissecting dish 30 mm x 12 mmm | Electron Microscopy Sciences | 70543-30 | Glass dissection dish |
Pyrex 3 Depression Glass Spot Plate | Corning | 7223-34 | Glass dissection plates |
Sylgard Black | SYLGARD, Sigma-Aldrich | 805998 | home made with charcoal |
ExpressFive S2 cell culture medium | Invitrogen | 10486-025 | |
20% PFA | Electron Microscopy Sciences | 15713 | |
Triton X-100 | Roth | 3051.3 | |
Normal goat serum | Jackson Laboratories | 005-000-121 | |
Normal donkey serum | Jackson Laboratories | 017-000-121 | |
Bovine Serum Albumin | Sigma | A9647 | |
Rabbit HA-tag | Cell Signaling | C29F4 | Primary antibody, dilution 1:500 |
Rat FLAG-tag | Novus Biologicals | NBP1-06712 | Primary antibody, dilution 1:100 |
Mouse V5-tag:DyLight 549 | AdSerotec | 0411 | Conjugated antibody, dilution 1:200 |
anti-rabbit AlexaFluor 488 | Invitrogen | A11034 | Secondary antibody, dilution 1:250 |
anti-rat DyLight 647 | Jackson Laboratories | 712-605-153 | Secondary antibody, dilution 1:100 |
Vecta Shield | Vector Laboratories | H-1000 | |
SlowFate Gold | Invitrogen | S36937 | |
Secure Seal Spacer | Grace Biolabs | Contact company for ordering | |
Microscope cover glass 22 X 60 mm | Marienfeld | 101152 | |
Microscope cover glass 22 x 22 mm | Roth | H874 | |
Stereo Microscope, Leica MZ6 | Leica | ||
Confocal laser scanning microscope LSM710 | Zeiss | ||
Immersol | Zeiss | 518 F | Immersion oil for fluorescence-microscopy, halogen free |
Immersol | Zeiss | W 2010 | Immersion fluid for water-immersion objectives, halogen free |
R56F03-GAL4 (EG) | Bloomington Stock Center | 39157 | GAL4 driver |
R86E01-GAL4 (ALG) | Bloomington Stock Center | 45914 | GAL4 driver |
hspFlpPestOpt; UAS-FRT-stop-FRT-myr-smGFP-HA, UAS-FRT-stop-FRT-myr-smGFP-FLAG, UAS-FRT-stop-FRT-myr-smGFP-V5 | Bloomington Stock Center | 64085 | UAS reporter (https://bdscweb.webtest.iu.edu/stock/misc/mcfo.php) |
Fiji (Image J) | Image analysis software | ||
Multi Time Macro | Zeiss | Software for automated scanning |