Summary

活性有机碳评估土壤中连续熏蒸孵化程序

Published: October 29, 2016
doi:

Summary

Labile organic carbon (LOC) and the potential carbon turnover rate are sensitive indicators of changes in soil nutrient cycling processes. Details are provided for a method based on fumigating and incubating soil in a series of cycles and using the CO2 accumulated during the incubation periods to estimate these parameters.

Abstract

管理措施及环境的变化能够改变土壤养分和碳循环。土壤活性有机碳,易分解碳库,对于干扰非常敏感。它也是对土壤中的微生物的一级基体,这是营养循环的基础。由于这些属性,活性有机碳(LOC)已被鉴定为用于土壤状况的指标参数。量化LOC的成交率也有助于理解土壤养分循环过程的变化。一个顺序熏蒸培养法已经发展到估算土壤LOC和电位C周转率。该方法需要熏蒸土壤样品,并在10天的潜伏期在一系列熏蒸孵化周期的量化CO 2 -C气息奄奄。不稳定的有机碳和电位C周转率,然后从积累的二氧化碳带有负指数模型外推。为进行这种方法过程描述ð。

Introduction

由于碳(C)和养分循环和土壤变化的敏感性及其重要的作用,土壤LOC是衡量土壤有机质质量的一个指标的重要参数。森林和农业生态系统在很大程度上依赖于养分的土壤有机质矿化作为营养来源。管理活动可以改变土壤有机碳池规模和周转率,造成营养供应1的变化。土壤有机碳组成顽抗C,其中有几千年的周转率,和LOC,其中有从几个星期到几年2,3,4周转率的两个主要组分。土壤活性C由可分解容易基材如微生物生物量碳,低分子量化合物(氨基酸,简单碳水化合物)从植物根际沉积,并分解副产品和渗沥液从植物垃圾1,4,5。由于土壤活性C是容易分解,它是管理做法和自然现象的干扰或改变土壤6高度敏感。土壤活性C作为用于有机物7分解土壤中的微生物的主要能量来源。因此,LOC影响养分循环更大程度确实比土壤有机碳8的稳定形式。土壤中的微生物也负责对由LOC 9,10,11的激发效应推动顽抗土壤有机质分解过程中发生的大多数异养呼吸。这种呼吸起着全局C周期实质性的作用,因为土壤有机碳是大约两倍,大气C 11的。

作为其在陆地生态系统的重要性因此,几种方法已被开发来估计土壤LOC。这些方法可以被划定为三个一般分类:物理,化学和生物化学。光密度分离方法是物理甲基这是由土壤有机碳分离成重或轻馏分或成粗和细颗粒有机碳12,13,14,15的消耗臭氧层物质。分离方法都比较容易进行,但是它们不经常产生一致的结果,因为这些部分与土壤类型矿物组合物,植物材料的尺寸和密度,以及土壤团粒一致性13,15变化。分离方法也产生约15 LOC只定量信息。

几种化学方法可用于LOC估计。有机碳的水萃取相对容易执行,并且这些方法往往提供容易重复的结果。然而,这些萃取不涉及可用基板的微生物15的整个范围。土壤有机碳的化学分离几种氧化方法已经被开发出来。氧化方法有特征的数量和不稳定的有机碳的质量优势虽然某些方法需要使用危险化学品的工作并且在结果15的再现方法之间的差异。酸水解的提取方法是另一种类型的可以测量的数量和LOC的质量化学分馏过程的,但这种方法的结果不会促进其生物学性质13,15的解释。

对土壤的LOC解释生化方法已经开发了。作为CO 2的呼吸测定释放由微生物活性有机C可被测定。这些检测提供了真正的矿化有机物的估计,但通常只有最不稳定化合物的测定15期间矿化。通过熏蒸孵化16和熏蒸提取17测得的土壤微生物生物量C已被用于开发约LOC推论。然而,这些程序提供C的估计中微生物生物量,而不是LOC.两个熏蒸过程包括来自非熏蒸土壤值,以确定微生物量碳的减法,但它已被提出,没有非熏蒸土壤的减法得到的值中除微生物生物量18提供C的不稳定有机级分的量度。

测量LOC连续熏蒸孵化(SFI)程序13适于从土壤微生物生物量碳计量熏蒸孵化过程16生物化学方法。该SFI方法具有一定的相对估计LOC的其他方法的优势。对于该方法的概念的基础是,LOC是微生物降解的C,它支配微生物生长和LOC是物理上访问并通过土壤中的微生物的化学降解的。在田间条件下,微生物的生长通常是由碳的可用性,营养物质的可用性,可用孔隙空间,和/或捕食的限制。这些因素是近ELIMI通过熏蒸经过NAT,从而为微生物的生长条件,畅通无阻。没有营养物中的方法的潜伏期除去。在多个熏蒸和孵化周期的过程中,微生物的生长变得被C的数量和质量(不稳定性)13限定。在孵化周期的累积二氧化碳呼出用来推断LOC用一个简单的负指数模型11,13,19。的电位C周转率也可以从指数模型的斜率导出,所以所述SFI方法具有优势的同时估计所述浓度和LOC 11的电位流动率大多数其他LOC方法。对于其他的方法,如果示踪剂如14 C的使用13只能确定在LOC的潜在流失率的信息。从而所述SFI方法是一种相对简单和廉价的用于获得既LOC及其潜在流动率的测量技术。

Protocol

1.收集土壤的试验区单位20内并在实验条件获取的样品代表确定站点属性,如坡度和土壤特性,包括质地,容重,pH值,有机地平线的深度,和/或养分含量的差异。确定小区内的植被类型的差异。使用变异系数的已知或公开的估计站点属性来估计达到预先规定的相对误差所需的样本数。 土壤样品使用基于现场和实验装置条件的图案的螺旋或其它收集装置。 对于同质条?…

Representative Results

在一系列的在美国东南部24,25,26,27进行的实验中,本文描述的已使用的所述SFI方法。总之,这些实验涵盖了多种植被类型,包括火炬松( 火炬松 ),柳枝稷( 柳枝稷 ),三叶( 美洲黑杨巴特拉姆前沼泽)和大豆(Glycine max L.大豆- )。该方法是在确定施肥中的LOC和/或电位C周转率的差异,并在所有的研究种植练习治疗敏感。有在LOC,并?…

Discussion

The SFI method is an effective protocol for detecting differences in soil LOC and potential C turnover rates over a range of management practices (such as fertilization, tillage, vegetation control, and harvest practices) and soil conditions. Soil LOC content and C turnover rate can be used to understand alterations of nutrient cycles. The SFI method also provides measurement of microbial biomass C from the first fumigation-incubation event. The ability to measure soil LOC, C turnover, and microbial biomass C concurrentl…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

The authors gratefully acknowledge Michelle Gonzales, Kenny Kidd, Brad Osbon, and all other personnel that conducted the laboratory procedures for these data. The authors are thankful for assistance from Andrew Scott in developing software coding to conduct model-fitting procedures. The authors also appreciate the funding from the U.S. Department of Agriculture National Institute of Food and Agriculture, Sustainable Agriculture and Research & Education, Sun Grant South Central region, and the National Council of Air and Stream Improvement that made possible the studies from which representative results provided in this paper were drawn.

Materials

Soil auger sampling kit JMC PN039 Several other manufacturers of punch augers are available
Parafilm Curwood PM999
Aluminum weighing boats Fisherbrand 08-732-103
General purpose drying oven Fisher Scientific 15-103-0511 Many other manufacturers of general purpose laboratory ovens are available
10.5 L vacuum desiccator Corning 3121-250
Glass scintillation vial Wheaton 968560
Glass threaded vials, 41 mL  Fisherbrand 03-339-21N
Chloroform, stabilized with amylenes Sigma-Aldrich 67-66-3
Boiling chips Fisher Scientific S25201
Glass rod Fisherbrand S63449
Size 10 rubber stopper Fisherbrand 14-130P Rubber stoppers can be purchased as solid and drilled in center to install glass rod or bought with a hole to insert glass rod
Wide-mouth PPCO bottle, 0.5 L ThermoScientific 3121050016
Sodium hydroxide, reagent grade Sigma-Aldrich S5881
Barium chloride Sigma-Aldrich 202738
Phenolphthalein indicator Fisher Scientific S25466
Hydrochloric acid solution, 0.1 N Fisher Scientific SA54-4

Referenzen

  1. Blair, G., et al. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 1459-1466 (1995).
  2. Schimel, D. S., et al. Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma. 36, 201-214 (1985).
  3. Parton, W. J., et al. Analysis of factors controlling soil organic matter levels in great-plains grasslands. Soil Sci. Soc. Am. J. 51, 1173-1179 (1987).
  4. Wu, H., et al. Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biol. Fertil. Soils. 48, 305-313 (2011).
  5. Jones, D. L., et al. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163, 459-480 (2004).
  6. Harrison, K. G., et al. The effect of changing land use of soil radiocarbon. Science. 262, 725-726 (1993).
  7. Jinbo, Z., et al. Land use effects on the distribution of labile organic carbon fractions through soil profiles. Soil Sci Soc. Am. J. 70, 660-667 (2006).
  8. Whalen, J. K., et al. Carbon and nitrogen mineralization from light- and heavy-fraction additions to soil. Soil Biol Biochem. 32, 1345-1352 (2000).
  9. Gregorich, E. G., et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 74, 367-385 (1994).
  10. Hamer, U., et al. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol. Biochem. 37, 445-454 (2005).
  11. Feng, W., et al. Shifting sources of soil labile organic carbon after termination of plant carbon inputs in a subtropical moist forest of southwest China. Ecol. Res. 26, 437-444 (2011).
  12. Tisdall, J. M., Carter, M. R., Stewart, B. A. Formation of soil aggregates and accumulation of soil organic matter. Structure and Organic Matter Storage in Agricultural Soils. , 57-96 (1996).
  13. Zou, X. M., et al. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biol. Biochem. 37, 1923-1928 (2005).
  14. Cambardella, C. A., Elliott, E. T. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777-783 (1992).
  15. Strosser, E. Methods for determination of labile soil organic matter: an overview. J. Agrobiol. 27, 49-60 (2010).
  16. Jenkinson, D. A., Powlson, D. S. The effects of biocidal treatment on metabolism in soil V: a method for measuring soil biomass. Soil Biol. Biochem. 8, 209-213 (1976).
  17. Vance, E. D., et al. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703-707 (1987).
  18. De-Polli, H., et al. Chloroform fumigation-extraction labile C pool (microbial biomass C "plus") shows high correlation to microbial biomass C in Argentinian and Brazilian soils. Cienc. Suelo. 25, 15-22 (2007).
  19. Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 44, 322-331 (1963).
  20. Pennock, D., Carter, M. R., Gregorich, E. G., et al. Chapter 1, Unit 1, Soil sampling designs. Soil Sampling and Methods of Analysis. , (2008).
  21. Luizao, R. C. C., et al. Seasonal variation of soil microbial biomass: the effects of clearfelling a tropical rainforest and establishment of pasture in the central Amazon. Soil Biol. Biochem. 24, 805-813 (1992).
  22. Horwath, W. R., Paul, E. A., Weaver, R. W., et al. Microbial biomass. Methods of soil analysis part 2: microbiological and biochemical properties. , 753-773 (1994).
  23. Jenkinson, D. S., Ladd, J. N., Paul, E. A., Ladd, J. N. Microbial biomass in soil: measurement and turnover. Soil Biochemistry. , 415-471 (1981).
  24. Blazier, M. A., Gungor, E. B. O., et al. Poultry litter fertilization impacts on soil, plant, and water characteristics in loblolly pine (Pinus taeda L.) plantations and silvopastures in the mid-South USA. Principles, application, and assessment in soil science. , 43-74 (2011).
  25. Blazier, M. A., et al. Straw harvesting, fertilization, and fertilizer type alter soil biophysical properties in a loblolly pine plantation in the mid-South USA. Biol. Fertil. Soils. 45, 145-153 (2008).
  26. Blazier, M. A., et al. Loblolly pine age and density affects switchgrass growth and soil carbon in an agroforestry system. For. Sci. 58, 485-496 (2012).
  27. Blazier, M. A., et al. Nitrogen and carbon of switchgrass, loblolly pine, and cottonwood biofuel production systems in the Southeast United States. For. Sci. 61, 522-534 (2015).
  28. Zhang, M., et al. Decomposition differences of labile carbon from litter to soil in a tropical rain forest and rubber plantation of Xishuagbanna, southwest China. Eur. J. Soil Biol. 55, 55-61 (2013).
  29. Nelson, D. W., Sommers, L. E., Sparks, D., et al. Total carbon, organic carbon, and organic matter. Methods of soil analysis. Part 3: chemical methods. , 961-1090 (1996).
  30. Huang, L., et al. Correlation among soil microorganisms, soil enzyme activities, and removal rates of pollutants in three constructed wetlands purifying micro-polluted river water. Soil Biol. Biochem. 70, 221-228 (2012).
  31. Kong, L., et al. Enzyme and root activities in surface-flow constructed wetlands. Chemosphere. 76, 601-608 (2009).
  32. Cui, L., et al. Evaluation of nutrient removal efficiency and microbial enzyme activity in a baffled subsurface-flow constructed wetland system. Bioresour. Technol. 146, 656-662 (2013).
  33. Jenkinson, D. S., Wilson, J. R. Determination of microbial biomass carbon and nitrogen in soil. Advances in nitrogen cycling in agricultural ecosystems. , 368-386 (1988).
  34. Sparling, G. P., et al. Interference from plant roots in the estimation of soil microbial ATP, C, N, and P. Soil Biol. Biochem. 17, 275-278 (1985).
  35. Christie, P., Beatte, J. A. M. Significance of sample size in measurement of soil microbial biomass by the chloroform fumigation-incubation method. Soil Biol. Biochem. 19, 149-152 (1987).
  36. McLaughlin, K. K., Hobbie, S. E. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J. 68, 1616-1625 (2004).
  37. Xia, X., et al. Variation of soil labile organic carbon pools along an elevational gradient in the Wuyi Mountains, China. J. Resour. Ecol. 1, 368-374 (2010).

Play Video

Diesen Artikel zitieren
Blazier, M. A., Liechty, H. O. Assessment of Labile Organic Carbon in Soil Using Sequential Fumigation Incubation Procedures. J. Vis. Exp. (116), e54614, doi:10.3791/54614 (2016).

View Video