Optically transparent zebrafish embryos are widely used to study and visualize in real time the interactions between pathogenic microorganisms and the innate immune cells. Micro-injection of Mycobacterium abscessus, combined with fluorescence imaging, is used to scrutinize essential pathogenic features such as cord formation in zebrafish embryos.
Zebrafish (Danio rerio) embryos are increasingly used as an infection model to study the function of the vertebrate innate immune system in host-pathogen interactions. The ease of obtaining large numbers of embryos, their accessibility due to external development, their optical transparency as well as the availability of a wide panoply of genetic/immunological tools and transgenic reporter line collections, contribute to the versatility of this model. In this respect, the present manuscript describes the use of zebrafish as an in vivo model system to investigate the chronology of Mycobacterium abscessus infection. This human pathogen can exist either as smooth (S) or rough (R) variants, depending on cell wall composition, and their respective virulence can be imaged and compared in zebrafish embryos and larvae. Micro-injection of either S or R fluorescent variants directly in the blood circulation via the caudal vein, leads to chronic or acute/lethal infections, respectively. This biological system allows high resolution visualization and analysis of the role of mycobacterial cording in promoting abscess formation. In addition, the use of fluorescent bacteria along with transgenic zebrafish lines harbouring fluorescent macrophages produces a unique opportunity for multi-color imaging of the host-pathogen interactions. This article describes detailed protocols for the preparation of homogenous M. abscessus inoculum and for intravenous injection of zebrafish embryos for subsequent fluorescence imaging of the interaction with macrophages. These techniques open the avenue to future investigations involving mutants defective in cord formation and are dedicated to understand how this impacts on M. abscessus pathogenicity in a whole vertebrate.
Mycobacterium abscessus é um agente patogénico emergente que faz com que um largo espectro de síndromes clínicos em seres humanos. Estes incluem infecções cutâneas, bem como infecções pulmonares crônicas graves, principalmente encontrados em imunocomprometidos e em pacientes com fibrose cística 1,2,3,4. M. abscessus também é considerado como um dos principais rápido crescimento espécies de micobactérias responsáveis por infecções hospitalares e iatrogênica em seres humanos. Além disso, vários relatórios recentes em destaque a possibilidade de que M. abscessus pode atravessar a barreira sangue-cérebro e induzir lesões importantes no sistema nervoso central (SNC) 5,6. Apesar de ser um cultivador rápido, M. exposições abscessus também várias características patogênicas que estão relacionados com os do Mycobacterium tuberculosis, incluindo a capacidade de permanecer em silêncio durante anos dentro de estruturas granulomatosas e gerar lesões caseosas nos pulmões 7. Mais alarmante é a baixa sensensibili- de M. abscessus aos antibióticos, tornando estas infecções extremamente difícil de tratar levando a uma taxa de insucesso terapêutico significativo 8,9. A ameaça importante desta espécie é principalmente a sua resistência intrínseca a antibióticos, que é de grande preocupação em instituições de saúde públicas 10 e uma contra-indicação para transplante pulmonar 11.
M. abscessus exibe lisas (S) ou ásperas morfotipos (R) da colônia que levam a desfechos clínicos diferentes. Em contraste com a estirpe S, R bactérias têm uma tendência para crescer uma extremidade à outra, levando a uma corda ou cabo, como a estrutura 12,13. Vários estudos independentes com base em modelos celulares e animais seja revelado o fenótipo hiper-virulência do morfotipo R 14,15. A partir de estudos epidemiológicos, os casos mais graves de M. infecções pulmonares abscessus parecem estar associados com R 16 variantes que são a única variante quetem sido visto a persistir por anos em um hospedeiro infectado 3. A diferença morfotipo depende da presença (em S) ou perda (em R $) de glycopeptidolipids associada de superfície (GPL) 12. No entanto, devido às limitações inerentes dos modelos celulares / animais actualmente disponíveis utilizados para estudar M. infecção abscessus, o nosso conhecimento sobre os eventos fisiopatológicos das variantes R ou S permanece obscura. A infecção de ratos imuno-competentes através de via intravenosa ou aerossóis conduz à colonização transiente, o que dificulta a utilização de ratos para estudar infecções persistentes e in vivo para os testes de susceptibilidade droga 17. Por conseguinte, o desenvolvimento de modelos animais susceptíveis à manipulação da resposta do hospedeiro é um grande desafio. Neste contexto, os modelos não-mamíferos de infecção foram recentemente desenvolvidos, incluindo Drosophila melanogaster 18 que oferece várias vantagens, tais como custos, velocidade e ética o aceitabilidadeVer o modelo de mouse. O modelo de peixe-zebra (Danio rerio) de infecção também tem sido explorada para visualizar, por imagem não-invasivo, a progressão e cronologia da M. abscessus infecção em um animal vivo 19. Importante, uma prova de conceito também foi criado para demonstrar a sua aptidão para avaliações in vivo de antibióticos contra M. abscessus 17,20.
O peixe-zebra têm sido amplamente utilizados durante as duas últimas décadas para estudar as interacções entre vários agentes patogénicos e o sistema imune do hospedeiro 21. O crescente sucesso deste modelo vertebrado alternativa depende de grandes e únicas oportunidades que motivaram e validados a sua utilização para uma melhor compreensão das inúmeras infecções virais e bacterianas 19,22,23,24,25,26,27,28,29. Ao contrário da maioria dos outros modelos animais, embriões de peixe-zebra são opticamente transparentes, permitindo que imagens de fluorescência não-invasivo 30. Esta has levou a estudar M. abscessus infectado embriões de peixe-zebra com detalhes sem precedentes, culminando com a descrição dos cordões extracelular, que representam um exemplo de plasticidade morfológica bacteriana. Cordões representa um novo mecanismo de subverter o sistema imunitário e um mecanismo de chave promover patogénese de M. aguda infecção abscessus 19.
Este relatório descreve novas ferramentas e métodos que utilizam o embrião de peixe-zebra para decifrar os traços fisiopatológicos da M. abscessus infecção e para estudar as interacções entre os bacilos íntimas e do sistema imune inato. Em primeiro lugar, um protocolo detalhado microinjecção que inclui o processamento do inoculo bacteriano, preparação de embriões, e infecção por si só, é apresentada. Métodos especificamente adaptado para avaliar M. virulência abscessus medindo vários parâmetros, tais como a sobrevivência do hospedeiro e a carga bacteriana, são apresentados. É dado especial relevo sobre comopara monitorar, a um nível de espaço-temporal, o destino e a progressão da infecção e da resposta imune do hospedeiro a M. abscessus usando microscopia de vídeo. Além disso, para investigar a contribuição eo papel dos macrófagos durante M. abscessus infecção, métodos para gerar macrófagos-empobrecido embriões (usando abordagens quer genetically- ou baseados em quimicamente) são descritos. Finalmente, os protocolos para visualizar as interações específicas com macrófagos ou neutrófilos seja utilizando embriões fixos ou vivem são documentados.
O objetivo deste relatório é estimular novos estudos para lançar uma nova luz em M. mecanismos de virulência abscessus e particularmente o papel de cordões no estabelecimento de um processo de infecção aguda e descontrolada.
O peixe-zebra emergiu recentemente como um excelente sistema modelo para o estudo dos vertebrados dinâmica da infecção bacteriana usando um campo largo e de imagem confocal em tempo real 36. A combinação de suspensões de micobactérias dispersas (protocolo 2.2), juntamente com métodos micro-injecção (protocolo 4) permite infecções sistêmicas, reprodutíveis e posterior acompanhamento e visualização da progressão da infecção com um foco especial sobre as interações bacterianas com macrófago…
The authors have nothing to disclose.
Os autores agradecem a K. Kissa para discussões úteis e para a prestação de lipo-clodronate e L. Ramakrishnan pelo dom generoso de pTEC27 e pTEC15 que permitir a expressão de tdTomato e Wasabi, respectivamente. Este trabalho faz parte dos projetos da Agência Nacional de Investigação francesa (ZebraFlam ANR-10 MIDI-009 e DIMYVIR ANR-13-BSV3-007-01) e Sétimo Programa-Quadro da Comunidade Europeia (FP7-PEOPLE-2011-ITN) sob acordo de subvenção não. PITN-GA-2011-289209 para a Marie-Curie de Formação Inicial Rede FishForPharma. Gostaríamos também de agradecer à Associação Gregory Lemarchal e Vaincre La mucoviscidose (RF20130500835) para o financiamento CM Dupont.
BBL MGIT PANTA | BD Biosciences | 245114 | |
Bovine Serum Albumin | Euromedex | 04-100-811-E | |
Catalase from Bovine Liver | Sigma-Aldrich | C40 | |
Difco Middlebrook 7H10 Agar | BD Biosciences | 262710 | |
Difco Middlebrook 7H9 Broth | BD Biosciences | 271310 | |
Ethyl 3-aminobenzoate methanesulfonate salt (Tricaine) | Sigma-Aldrich | A5040 | |
Oleic Acid | Sigma-Aldrich | O1008 | |
Paraformaldehyde | Delta Microscopie | 15710 | |
Phenol Red | Sigma-Aldrich | 319244 | |
Tween 80 | Sigma-Aldrich | P4780 | |
Agar | Gibco Life Technologie | 30391-023 | |
Low melting agarose | Sigma-Aldrich | ||
Instant Ocean Sea Salts | Aquarium Systems Inc | ||
Borosilicate glass capillaries | Sutter instrument Inc | BF100-78-10 | 1mm O.D. X 0.78 mm I.D. |
Micropipette puller device | Sutter Instrument Inc | Flamming/Brown Micropipette Puller p-87 | |
Microinjector | Tritech Research | Digital microINJECTOR, MINJ-D | |
Tweezers | Sciences Tools inc | Dumont # M5S | |
Microloader Tips | Eppendorf |