We previously developed a technique for implanting tetrode wires into the central complex of cockroach brains that allows us to monitor activity in individual units of tethered cockroaches. Here we present a modified version of that technique that allows us to also record brain activity in freely moving insects.
Increasing interest in the role of brain activity in insect motor control requires that we be able to monitor neural activity while insects perform natural behavior. We previously developed a technique for implanting tetrode wires into the central complex of cockroach brains that allowed us to record activity from multiple neurons simultaneously while a tethered cockroach turned or altered walking speed. While a major advance, tethered preparations provide access to limited behaviors and often lack feedback processes that occur in freely moving animals. We now present a modified version of that technique that allows us to record from the central complex of freely moving cockroaches as they walk in an arena and deal with barriers by turning, climbing or tunneling. Coupled with high speed video and cluster cutting, we can now relate brain activity to various parameters of the movement of freely behaving insects.
This article describes a successful system for recording from neurons within the central complex (CC) of the cockroach, Blaberus discoidalis, as the insect walks in an arena and deals with objects that cause it to turn around, tunnel under, or climb over obstacles. The wires can also be connected to a stimulator to evoke activity in the surrounding neuropil with consequent behavioral changes.
Over the last decade considerable attention has been directed at the roles played by various brain regions in controlling insect behavior. Much of this focus has been directed toward the midline brain neuropils that are collectively referred to as the central complex (CC). Progress has been made as a result of wide varieties of techniques targeting questions about the role of the CC in behavior. Those techniques range from neurogenetic manipulations, primarily in Drosophila, coupled with behavioral analysis1-3, to electrophysiological techniques that monitor neural activity within the CC and attempt to relate that activity to behaviorally relevant parameters.
Electrophysiological techniques include intracellular recording from individual identified neurons4-9 and extracellular recording, often with multi channel probes10,11. These two techniques are complimentary. Intracellular recording with sharp electrodes or whole cell patch provides very detailed data on identified neurons, but is limited to one or two cells at once, requires limited or no movement, and can be maintained for relatively short periods of time. Extracellular recordings can be easily set up, do not require restraint, and can be maintained for hours. With multi channel tetrodes and cluster cutting, fairly large populations of neurons can be analyzed simultaneously9,12. While whole cell patch has been successfully used in tethered insects13, we feel that there is also a need for techniques that allow us to record neural activity in the brain for long periods of time in freely behaving insects as they deal with barriers to forward movement.
The need to record as the insect moves and bounces up and down pushed us toward extracellular recording methods. We have had good success recording in restrained preparations with commercially available 16 channels silicon probes11, however the small size of even large cockroaches means that the probes have to be mounted off the body. That, coupled with the delicacy of the probe tines, made them inappropriate for a free walking preparation. In two previous projects, we used bundles of fine wires forming a tetrode to accomplish similar recording properties but in a more robust arrangement. These tetrode bundles allowed us to record from tethered cockroaches and relate CC unit activity to changes in walking speed14 and turning behavior resulting from antennal contact with a rod10.
As useful as these tethered preparations have been and will continue to be, they do present some limitations. First, the behaviors that the insect can perform are limited to one plane. That is, we could readily evoke changes in walking speed or turning, but climbing and tunneling actions were not possible, at least with the typical tether arrangement. Second, our tethered preparations are “open loop”. That is, they do not allow for normal movement related feedback to the system. Thus, as the cockroach turned on our tether, its visual world was not altered accordingly. It is possible to build closed loop tether systems to introduce this kind of feedback. However, they are limited by the complexity of the programming and hardware of the simulated visual environment. Nevertheless, we felt that we could improve upon our existing tethered recording methods by recording from the animal as it walked freely in an arena or track and encountered objects as it would in its natural surroundings.
Although wireless systems for recording brain activity15 would be ideal, current systems have limitations in the number of recording channels, time of data acquisition, battery life and weight. We, therefore, opted to try to adapt our tethered recording system for use in freely moving preparations. As better wireless systems become available, this technique can be readily adapted to such devices. The system that is described in this article is light weight, works very well and appears to have little deleterious effect on the cockroach’s behavior. With an inexpensive high speed camera and cluster cutting software, activity in individual brain neurons can be related to movement. Here we describe the preparation of the tetrode wires and their implantation into the insect’s brain as well as recording techniques for electrical activity and motion and how those data can be brought together for subsequent analysis.
1. Preparation of Tetrode Wires
2. Animal Preparation
3. Experimental Procedures
4. Offline Analysis
We recorded the neural activity of 50 units from the CC in 27 preparations for walking experiments. For 15 of those preparations (23 units), climbing experiments were also performed. Individual units are named according to preparation and unit numbers (e.g. ʻunit 1-2ʼ indicates preparation 1, unit 2).
Snapshots of the video of one climbing trial are shown in Figure 4. The entire video is available in supplemental Video 1 (The sound is from unit 1-2). The recording was made in the right fan-shaped body (FB). The cockroach stopped walking when it encountered the block and used its antennae to assess the block (Figures 4A-C). Then the cockroach raised the front of its body, changing the body substrate angle (Figures 4D-E), before it swung its leg toward the top of the block and climbed over it (Figures 4F-I). The speed and height of the cockroach as well as the instantaneous firing rate of the two sorted units from the first to the current frame are shown above each frame. The instantaneous firing rate was calculated by smoothing spike times of each unit using a Gaussian kernel with a width of 50 msec. The firing rate of unit 1-1 increased during climbing and the increase of firing rate preceded the increase of speed (Figure 4I). Unit 1-2 was silent before climbing but started to fire after climbing was initiated (Figure 4I). The spikes of the two sorted units within 1 sec of the current frame are displayed below each frame. The orange line indicates the time covered by each frame and the blue rectangle indicates twice the width of the kernel that was used to calculate the instantaneous firing rate for the current frame.
One snapshot of the video of one arena exploration trial is shown in Figure 5A. The entire video is available in supplemental Video 2 (The sound is from unit 2-1). The recording was made in the middle FB. The position of the cockroach and its body orientation in each frame were extracted using Ctrax and used to calculate forward and heading speed as well as instantaneous firing rate. The trajectory of the cockroach in the entire video is shown in Figure 5B. Each black dot indicates the position of the cockroach in each frame and the path is color coded with the instantaneous firing rate of unit 2-1. As we recorded each trial at a constant frame rate (i.e. 20 fps), the longer the distance between two dots, the faster the speed at that time. The firing rate of unit 2-1 increased when the cockroach started to walk and was correlated with walking speed. In order to examine the tuning of individual units to the animal’s locomotion state (i.e. speed and direction), we constructed firing rate maps based on forward walking speed and turning speed for each unit. For many CC units, increased firing rate was restricted to specific locomotion states. For instance, unit 2-1 was tuned to forward walking irrespective of turning speed (Figure 5C).
Figure 1. Photos of animal preparation. A-C Frontal view of the cockroach head capsule. A. Two pieces of acetate sheet were placed close to the tetrode to provide the base for wax. B. A strain relief was create d by bending the tetrode into wax. C. The tetrode was fully covered by dental wax. D. Dorsal view of the cockroach body. A wooden rod was attached to the animal’s pronotum and the tetrode tubing was attached to the rod. The tetrode and the reference/ground electrode were further secured by attaching them to the anterior of the rod. Click here to view larger image.
Figure 2. Mark wire tip locations. A. A section of the brain of preparation no 2, showing one brown copper deposition site in the fan shaped body (FB). B. Schematic drawing of the CC and the wire tip location. PB, protocerebral bridge; FB, fan-shaped body; EB, ellipsoid body. Click here to view larger image.
Figure 3. A typical tetrode recording. A. Raw voltage traces from single electrodes within one tetrode bundle. Note the difference of the voltage traces among different electrodes. B. Three units were sorted using MClust. C. 3-dimensional view of the waveform energy as recorded on three of the four electrodes. Each dot is a single threshold event, color coded by the cluster it was ultimately assigned to. Click here to view larger image.
Figure 4. Snapshots of the video of one climbing trial. Above each frame: normalized speed, height of the cockroach as well as instantaneous firing rate of the two sorted units from the first to the current frame. Time 0 indicates the onset of climbing. Firing rate was normalized from 0-1, and speed and height were normalized from 0-0.5 for display purposes. Below each frame: the spikes of the two sorted units within 1 sec of the current frame. The orange line indicates the time covered by each frame and the blue rectangle indicates twice the width of the kernel that was used to calculate the instantaneous firing rate for the current frame. Individual units were named according to preparation and unit numbers (e.g. “unit 1-2” indicates preparation 1, unit 2). Click here to view larger image.
Figure 5. One snapshot of the video of one arena exploration trial A. The red oval line indicates the shape of the cockroach in that frame and the red dashed line indicates the position of the cockroach’s center of mass in the previous 10 frames. Right: turning and forward walking speed as well as the instantaneous firing rate of unit 2-1 at that frame. Below: the spikes of unit 2-1 within 4 sec of the current frame. As in Figure 4, the orange line indicates the time covered by each frame and the blue rectangle indicates twice the width of the kernel that was used to calculate the instantaneous firing rate for the current frame. B. The trajectory of the cockroach in the entire video. The large black dot indicates the starting point of the cockroach and each small black dot indicates the position of the cockroach in each frame. The trajectory was color coded with the instantaneous firing rate of unit 2-1, from blue (low) to red (high). C. The firing rate map of unit 2-1. For the entire experiment, forward and turning speed as well as spike times were smoothed using a Gaussian kernel with a width of 150 msec and were divided into nonoverlapping 50 msec long sections. For each divided section, a velocity vector was generated by averaging forward and turning speed within that period respectively. Firing rate for each velocity vector was also calculated. All velocity vectors were binned (10 mm/sec for forward walking speed and 10 degree/sec for turning speed) and a firing rate map was generated by overlaying the averaged firing rate for each bin obtained by averaging all the firing rates whose corresponding velocity vectors fell into that bin. X axis is the turning speed and y axis is the forward walking speed. Positive turning speed indicates right turning and negative turning speed indicates left turning. Click here to view larger image.
While previous electrophysiological studies on the CC or other regions of the insect brain have provided us with insights into the central control of behavior, most of them were performed in either restrained preparations9,11 or tethered ones10,14. As a result, the animal’s sensory experience and physiological state could be very different from those in a natural setting. Furthermore, the behavioral tasks that the animal can perform are limited to one plane under those situations. Here we presented a method to record from the CC in freely behaving cockroaches. Hopefully, we have provided you with all the necessary information you will need to capture electrophysiological recordings in freely behaving insects in your own laboratory. We presented the procedures for the systems that we use (Neuralynx, MClust, WinAnalzye, and Ctrax), but once the recoding electrodes are implanted, recording setup can be readily adapted to other systems.
We have performed 27 preparations, and as of yet none of the experiments was terminated because the cockroach damaged the wire sets. We have not observed any attempt by the animal to clean or remove the wire sets, wax, or rod. The implanted cockroaches walked in a normal gait. They were able to explore the arena and perform climbing tasks just as well as intact ones. Our experiments usually lasted 2-4 hr after the tetrode was implanted. Occasionally some units disappeared or their activity diminished throughout time, but most recordings were very stable throughout the whole experiment. We have also isolated some subjects and returned to recording and stimulation the following day. This method appears reliable for extended periods of extracellular recordings in freely behaving insects.
One point of emphasis is the fragile nature of the wire sets. They are easily damaged if great care is not taken during construction and implantation. Always move the wires and any dissecting instruments near them slowly, being careful not to bump or tear them. Wires may be carefully pulled from the preparation after the experiment and lesioning are completed, allowing for two or three uses. Be sure to retest, repolish, and replate before each use.
The key to a successful preparation is to keep the wire sets away from the cockroach. We use a long rod extending from the pronotum to above the abdomen and attach the tetrode tubing to the posterior end of the rod. Consequently, the tetrode tubing is always behind the cockroach when it is moving around in an arena such that the insect cannot reach the tubing with its antennae or legs. Placing the wire sets behind the cockroach also provides clearance over the animal’s body. This improves the video quality of our arena experiments because the camera is positioned above the arena. Leave no excess wires between the animal’s head and the tetrode tubing. If the insect can reach the wires with its antennae or legs, it will break them. In this method, the tubing slides freely over the wire, allowing us to draw excess wire up and secure it near the headstage.
One potential limitation of our method is the size of the arena where the cockroach can explore. The tetrode is 40 cm in length which is enough to provide access to the entire 40 x 40 cm2 arena. We have not encountered problems such as noise and tetrode quality. However, such problems could appear as we make longer tetrodes for a larger arena. Another potential problem with a longer tetrode is the weight of the tetrode. Our tetrode and rod weigh about 0.25 g which apparently does not impede a 2-3 g cockroach. We observed intact cockroaches exploring the same arena used for electrophysiology experiments. The walking activity and overall speed were similar between cockroaches carrying a rod and tetrode and unencumbered animals. However, we have not tested the limit of the load that a cockroach can carry before its performance drops. One solution to the limitations of a longer wire is to build a motorized platform for the headstage and the camera. Under such a system, the camera can track the cockroach’s movements in real time and output to the motor such that the platform can move accordingly. Therefore, a relatively short tetrode would be sufficient for a large arena because the headstage would remain directly above the animal.
The authors have nothing to disclose.
The authors thank Nick Kathman for suggestions and help at preparing for the manuscript. This technique was developed in conjunction with work supported by the AFOSR under grant FA9550-10-1-0054 and the National Science Foundation under Grant No. IOS-1120305 to RER.
Nichrome wire | Sandvik Heating Technology | Kanthal RO-800 | Use for tetrode |
Biomedical polyethylene tubing | A-M Systems | 800700 | Use for tetrode tubing |
Lynx-8 | Neuralynx | Use for multi-unit recording | |
Cheetah 32 | Neuralynx | Use for multi-unit recording | |
High speed camera | Basler | A602f | Use fir video recording for walking experiments |
High speed camera | Casio | EX-FC150 | Use for video recording for climbing experiments |
WINanalyze | Winanalyze | version 1.4 3D | Use for video tracking |
Matlab | MathWorks | MATLAB R2012b | Use for TTL pulse generation and off-line data analysis |