We describe here a method for biopsying olfactory mucosa from rat and human nasal cavities. These biopsies can be used for either identifying molecular anomalies in brain diseases or isolating multipotent adult stem cells that can be utilized for cell transplantation in animal models of brain trauma/disease.
The olfactory mucosa, located in the nasal cavity, is in charge of detecting odours. It is also the only nervous tissue that is exposed to the external environment and easily accessible in every living individual. As a result, this tissue is unique for anyone aiming to identify molecular anomalies in the pathological brain or isolate adult stem cells for cell therapy.
Molecular abnormalities in brain diseases are often studied using nervous tissue samples collected post-mortem. However, this material has numerous limitations. In contrast, the olfactory mucosa is readily accessible and can be biopsied safely without any loss of sense of smell1. Accordingly, the olfactory mucosa provides an “open window” in the adult human through which one can study developmental (e.g. autism, schizophrenia)2-4 or neurodegenerative (e.g. Parkinson, Alzheimer) diseases4,5. Olfactory mucosa can be used for either comparative molecular studies4,6 or in vitro experiments on neurogenesis3,7.
The olfactory epithelium is also a nervous tissue that produces new neurons every day to replace those that are damaged by pollution, bacterial of viral infections. This permanent neurogenesis is sustained by progenitors but also stem cells residing within both compartments of the mucosa, namely the neuroepithelium and the underlying lamina propria8-10. We recently developed a method to purify the adult stem cells located in the lamina propria and, after having demonstrated that they are closely related to bone marrow mesenchymal stem cells (BM-MSC), we named them olfactory ecto-mesenchymal stem cells (OE-MSC)11.
Interestingly, when compared to BM-MSCs, OE-MSCs display a high proliferation rate, an elevated clonogenicity and an inclination to differentiate into neural cells. We took advantage of these characteristics to perform studies dedicated to unveil new candidate genes in schizophrenia and Parkinson’s disease4. We and others have also shown that OE-MSCs are promising candidates for cell therapy, after a spinal cord trauma12,13, a cochlear damage14 or in an animal models of Parkinson’s disease15 or amnesia16.
In this study, we present methods to biopsy olfactory mucosa in rats and humans. After collection, the lamina propria is enzymatically separated from the epithelium and stem cells are purified using an enzymatic or a non-enzymatic method. Purified olfactory stem cells can then be either grown in large numbers and banked in liquid nitrogen or induced to form spheres or differentiated into neural cells. These stem cells can also be used for comparative omics (genomic, transcriptomic, epigenomic, proteomic) studies.
1. Collection of Olfactory Mucosa in Rats
2. Collection of Olfactory Mucosa in Humans
3. Isolation of Olfactory Stem Cells from Human and Rat Mucosa
4. Sphere Formation and Neuronal Differentiation of Olfactory Stem Cells
5. Representative Results:
Nasal human explant-outgrowing stem cells (Figure 2A) are dividing rapidly and confluency can be reached within one to two weeks. One key feature of stemness, nestin expression, was evaluated (Figure 2B). When grown on poly-L-lysine with a serum-free culture medium supplemented with EGF (50 ng/ml) and FGF2 (50 ng/ml), olfactory stem cells give rise to spheres (figure 2C). When grown in serum-containing culture medium newly plated spheres give rise to GFAP-expressing cells (˜50%), tubulin-expressing cells (˜10-15%) and O4-expressing cells (˜2-5%)9 (Figures 2D-F). However, the fate of the sphere-derived cells can be modified. For example, when grown in a Neurobasal culture medium supplemented with B27 and glutamate, most of the nasal olfactory stem cells into neuron-like cells expressing β-III tubulin (Figure 2G) and MAP2 (Figure 2H).
Figure 1. Overall scheme of the experiment. Olfactory mucosa biopsies are excised from rat or human nasal cavity. Explants can be used per se for comparative molecular studies aiming to identify biomarkers in brain diseases. For isolating olfactory stem cells, the interactions between the lamina propria and the neuro-epithelium are disrupted with the dispase II enzyme and, after 45 minutes, the epithelium is removed with a micro-spatula. Rodent olfactory stem cells are further selected by dissociating the lamina propria with collagenase IA. For human tissue, pieces of olfactory lamina propria are cultured under glass coverslip until outgrowing stem cells invade the whole well. After proliferation, using an appropriate culture medium, olfactory stem cells can generate spheres or differentiate into neuron-like cells. Olfactory stem cells can be used to i) repair brain diseases or trauma or ii) identify molecular markers of central nervous system diseases. Illustrations are made with the help of Servier Medical Art.
Figure 2. Culture and differentiation of nasal human olfactory stem cells. Human stem cells growing out of the lamina propria explant (A) are dividing rapidly, when cultivated in a serum-containing medium. Stem cells express the stemness marker nestin (B). When plated on poly-L-lysine-coated plastic and cultivated in a serum-free culture medium supplemented with EGF and FGF2, olfactory stem cells generate spheres (C). Sphere-derived cells, when plated in serum-containing culture medium, give rise to GFAP-expressing cells (˜50%), tubulin-expressing cells (˜10-15%) and O4-expressing cells (˜2-5%)9 (D-F). When grown in a Neurobasal culture medium supplemented with B27 and glutamate, they differentiate into neuron-like cells expressing β-III tubulin (G) and MAP2 (H).
The techniques presented here make the rodent and human olfactory mucosa a useful model for clinical research into the causes of neurodevelopmental and neurodegenerative diseases as well as a tool for repairing the pathological or traumatized brain. The protocol is relatively straightforward and can be easily carried out by an experienced cell biologist. The success rate for the biopsy and culture techniques is high.
Critical steps
Possible modifications
Future applications
The authors have nothing to disclose.
This work was financially supported by ANR (Agence nationale de la Recherche), AFM (Association Française contre les Myopathies), FEDER in PACA and IRME (Institut de Recherche sur la Moelle épinière et l’Encéphale). We greatfully thank Marie Pierre Blanchard (Jean Roche Institute) for her efficient help during time lapse recording.
Name of the reagent | Company | Catalogue number |
Collection of olfactory mucosa in rats | ||
DMEM/HAM F12 | Invitrogen | 31331-028 |
Sodium Pentobarbital | ||
Rongeur | FST | |
26 gauge needle | Terumo | NN-2613R |
Forceps | ||
Collection of olfactory mucosa in humans | ||
Rigid endoscope | Karl Storz or Richard Wolf Medical | |
Lidocaine | ||
Epinephrine | ||
Throughcut ethmoid forceps | Karl Storz or Richard Wolf Medical | |
Isolation of olfactory stem cells | ||
Dispase II | Roche | 10 295 825 001 |
Dissecting microscope | ||
Micro spatula | FST | |
Collagenase IA | Sigma-Aldrich | C9891 |
Ca-free/Mg-free PBS | Invitrogen | 14190-250 |
Fetal calf serum | Invitrogen | 10270098 |
Glass coverslip | Knittel Glaser | 001/35 |
Sphere formation and neuronal differentiation | ||
Poly-L-lysine | Sigma-Aldrich | P-1274 |
Insulin transferrin selenium (ITS) | Invitrogen | 51500056 |
EGF | R&D Systems | 236-EG |
FGF2 | R&D Systems | 233-FB |
Neurobasal medium | Invitrogen | 21103-049 |
B-27 Serum-Free Supplement | Invitrogen | 17504-044 |
Penicillin/streptomycin | Invitrogen | 15140122 |
Glutamine | Invitrogen | 25030024 |
Glutamate | Sigma-Aldrich |