Source: Jarriault, D., et al. Perforated Patch-clamp Recording of Mouse Olfactory Sensory Neurons in Intact Neuroepithelium: Functional Analysis of Neurons Expressing an Identified Odorant Receptor. J. Vis. Exp. (2015).
This video demonstrates electrophysiological recording of olfactory sensory neurons (OSNs) in mice using a perforated patch-clamp technique. The olfactory epithelium, containing OSNs with fluorophore-tagged odor receptors, is isolated from a mouse and secured in a recording chamber. A recording pipette is clamped to the dendritic knob of an OSN, and nystatin within the pipette perforates the membrane to form electrical connectivity with the cell. Finally, another pipette is used to deliver an odor stimulant, and the electrophysiological activity of the patched cell is recorded.
All procedures involving animal models have been reviewed by the local institutional animal care committee and the JoVE veterinary review board.
1. Animals
2. Preparation of Electrodes and Solutions
3. Preparation of Olfactory Epithelium
Note: OR-IRES-tauGFP mice express the tauGFP under the control of the OR promoter. In these mice, all neurons expressing the OR of interest are labeled with GFP. This protocol is adapted for ORs expressed in all zones. However, dissections and recordings are easier for ORs expressed in the dorsal zone.
4. Recording Session
The authors have nothing to disclose.
Heavy equipment | |||
vibration table with Faraday cage | TMC | 63-500 SERIES | required : isolates the recording system from vibrations induced by the environment (movements of experimenter, vibrations of equipment such as fans for cooling computers, etc); can also be purchased with a Faraday cage, or equipped by a custom made Faraday cage; this cage is recommended to avoid electric noise from the environment |
optics | |||
microscope | Olympus | BX51WI | upright microcope equipped with epifluorescence; fixed or moving stage depending on the user's preference |
objectives | Olympus | LUMPLFL40XW | at least 2 objectives required: a 4X or 10X for coarse approach to the cell; and a 40X immersion long distance example Olympus LUMPLFL40XW / IR /0,8 / WD:3.3 MM |
magnifier | Olympus | U-TVCAC | ABSOLUTELY REQUIRED: placed in the light path between the objective and the camera; allows to magnify the image on the screen in order to reach precisely the knob with the recording electrode |
camera | Olympus | DP72 | a good camera is required to see the neurons in fluorescence as well as in bright field; the controlling software is simple and allows to take pictures and do live camera image to monitor the approach of the electrode to the cell. An ultrasensitive camera is not necessary |
filters | Olympus/Chroma | depending on the fluorescent protein used in the mice; example for GFP: excitation : BP460-490: emission: HQ530/50m | |
Recording electrodes/system | |||
amplifier | HEKA | EPC10 USB | monitors the currents flowing through the recording electrode and also controls the puffing by sending a TTL signal to the spritzer; the EPC10 setup is controled by computer |
software | HEKA | Patchmaster | controls the amplifier during the experiment |
micromanipulator | Sutter | MP225 | precision micromanipulator, allows precise movements down to 1/10th of a micrometer; this model is very stable; avoid hydraulic manipulators that may drift |
electrode puller | Sutter | P97 | with a FT345-B wide trough filament; to prepare recording pipets of about 2µm diameter with a long tip to reach the cells; the resistance should be 15 to 20Mohm with perforated patch clamp solution |
glass | Sutter | BF120-69-10 | in our recording conditions, this glass is ideal for recording pipets |
recording chamber | Warner Instruments | RC-26G | a chamber is needed to set the preparation under the microscope. To maintain the preparation in the center of the chamber, a net/ anchor should be used. |
Stimulation | |||
glass | WPI | TW100F-4 | attached in groups of 7, these pipettes are used to prepare prepulled stimulating pipettes |
multibarrel puller | MDI | PMP-107-Z | by association of pull and twist, this puller allows us to prepare puffing electrodes with 7 barrels |
precision pressure injector | Toohey Company | P/N T25-1-900 Single Channel | this precision pressure injector controls the pressure ejected in the multibarrel puller; it is controlled manually or by the amplifier by a 5V TTLs |
micromanipulator | Narishige | YOU-1 | a coarse manipulator is enough to bring the puffing electrode close to the recording site |
tubings | |||
solutions/perfusion/chemicals | |||
vacuum pump | gardner denver | ||
perfusion system | N/A | N/A | |
nystatin | Sigma-Aldrich | N3503 | mandatory to perpare internal solution for perforated patch clamp |
Dimethyl sulfoxide | Sigma-Aldrich | D5879 | used to disolve nystatin for internal solution for perforated patch |
Sodium chloride | Sigma-Aldrich | S9625 | extracellular solution |
Potassium chloride | Sigma-Aldrich | P4504 | intracellular/extracellular solution |
Calcium chloride dihydrate | Sigma-Aldrich | C7902 | extracellular solution |
Sodium phosphate monobasic monohydrate (NaH2PO4) | Sigma-Aldrich | S9638 | extracellular solution |
Magnesium sulfate heptahydrate (MgSO4 7H2O) | Sigma-Aldrich | 63140 | extracellular solution |
Glucose | Sigma-Aldrich | G8270 | extracellular solution |
Sodium bicarbonate | Sigma-Aldrich | S6297 | extracellular solution |
EGTA (Ethylene glycol-bis(2- aminoethylether)-N,N,N′,N′- tetraacetic acid) | Sigma-Aldrich | E3889 | internal solution |
Potassium hydroxyde | Sigma-Aldrich | P1767 | internal solution |
Methyl Sulfoxide | Sigma-Aldrich | W387509 | intracellular solution |
Hepes-Na | Sigma-Aldrich | H7006 | intracellular solution |
Sucrose | Sigma-Aldrich | S0389 | intracellular solution |