15.7:

Problem Solving: Energy in Simple Harmonic Motion

JoVE Core
Physik
Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich.  Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
JoVE Core Physik
Problem Solving: Energy in Simple Harmonic Motion

884 Views

00:00 min

May 16, 2023

Simple harmonic motion (SHM) is a type of periodic motion in time and position, in which an object oscillates back and forth around an equilibrium position with a constant amplitude and frequency. In SHM, there is a continuous exchange between the potential and kinetic energy, which results in the oscillation of the object.

Consider the spring in a shock absorber of a car. The spring attached to the wheel executes simple harmonic motion while the car is moving on a bumpy road. The force on the spring is conservative, and the potential energy is stored when the spring is extended or compressed. In this case, the wheel attached to the spring oscillates in one dimension, with the force of the spring acting parallel to the motion. At the equilibrium position, the potential energy stored in the spring is zero. If there are no dissipative forces, the total energy is the sum of the potential energy and the kinetic energy and is expressed as follows:

Equation1

The total energy in simple harmonic motion remains conserved for the system at every point during the motion and is proportional to the square of the amplitude.

The total energy equation in simple harmonic motion presents a useful relationship between velocity, position, and total mechanical energy. This equation can be used if the problem requires a relation between position, velocity, and acceleration without reference to time. Since the energy conservation equation involves displacement and velocity, one must infer the signs of the displacement and velocity from the situation. For instance, if the body moves from the equilibrium position toward the point of the greatest positive displacement, the displacement and velocity are positive.

Studying the energy in simple harmonic motion is vital for understanding the behavior of oscillating systems in physics and engineering.