2.9:

Ladder Diagrams: Acid–Base Equilibria

JoVE Core
Analytical Chemistry
Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich.  Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
JoVE Core Analytical Chemistry
Ladder Diagrams: Acid–Base Equilibria

223 Views

01:32 min

April 04, 2024

Understanding the chemistry between the reagents is necessary for performing any experiment. To this end, scientists have designed a tool called a ladder diagram, which is a graphical representation that helps illustrate the chemistry of a system.

A ladder diagram for acid-base equilibria consists of a vertical axis that represents pH and horizontal bars (steps on the ladder) that help position all the pKa values in the system. At equilibrium, the pH value of the system corresponds to one of the pKa values, which divide the system into more acidic and more basic regions. At pH values higher or lower than any given pKa value, i.e. when the system is not at equilibrium, the dominant species will correspond to the one written in that region of the diagram.

For example, the ladder diagram of the HF and F acid-base equilibria system shows a horizontal line at pH 3.17, which is the pKa value of HF. At pH values above 3.17,  F predominates, whereas at pH values below 3.17, the HF concentration is higher.

The ladder diagram of this system can also be used to understand the effect of pH on the solubility of CaF2. The solubility of CaF2 can be increased by converting F into HF. In contrast, its solubility decreases if F dominantes. From the ladder diagram, it can be understood that pH values above 3.17 allow F to dominate, thereby decreasing the solubility of CaF2