Science Education
>

An Intramedullary Locking Nail for Standardized Fixation of Femur Osteotomies to Analyze Normal and Defective Bone Healing in Mice

Instructor Prep
concepts
Student Protocol
JoVE 杂志
医学
需要订阅 JoVE 才能查看此.  登录或开始免费试用。
JoVE 杂志 医学
An Intramedullary Locking Nail for Standardized Fixation of Femur Osteotomies to Analyze Normal and Defective Bone Healing in Mice

All procedures were IACUC-approved and followed institutional guidelines (Landesamt für Verbraucherschutz, Zentralstelle Amtstierärztlicher Dienst, Saarbrücken, Germany). Analgesia and infection prevention should be in agreement with the respective guidelines of the country and institution where the experiments are to be performed.

1. Preparation of Implants and Surgical Instruments

  1. Select a scalpel blade (size 15), small preparation scissors, fine forceps, dressing forceps, small pincers, 24 gauge (G) and 27 G needles, a non-resorbable 5-0 suture, and a needle holder from the microsurgical instrument box.
  2. Unpack the intramedullary nail, the interlocking pins, the special aiming device, the Gigli saw, the template for the Gigli saw, the centering drill bit (1 mm diameter), the drill bit (0.3 mm diameter), and the hand drill (Figure 2; see List of Materials).
    NOTE: The intramedullary nail (0.8 mm diameter, 15.7 mm length) is an intramedullary locking nail made of medical-grade stainless steel for retrograde implantation into the femur. The nail has a proximal thread (4 mm length) and two holes for the insertion of the interlocking pins (0.3 mm diameter) to achieve axial and rotational stability (Figure 1).
  3. Expose the implants and all surgical instruments to a disinfecting solution (e.g., 96% alcohol) for 5 min or sterilize them (steam sterilization, 130 °C, 25 min). After disinfection or sterilization, place the instruments on a sterile operation cloth. Position the sterile operation cloth directly adjacent to the small animal operation table.

2. Animals, Anesthesia, and Analgesia

  1. Choose the strain, age, and sex of the mice as necessary for the study and the question to be addressed.
    NOTE: For this study 12- to 14-week-old male CD-1 mice were used. For nail implantation, the ideal body weight of the animals is 25 – 35 g.
  2. Anesthetize the mice with an intraperitoneal injection of 15 mg/kg xylazine and 75 mg/kg ketamine. Confirm the anesthetization by toe pinch. Apply eye lubricant to protect the animals' eyes from drying during anesthesia. After induction of anesthesia, place the mouse under a heat lamp to keep the body temperature constant.
  3. Apply tramadol-hydrochloride in the drinking water (2.5 mg/100 ml) for analgesia from day 1 before the surgery until day 3 after the surgery.

3. Surgical Procedure and Nail Implantation

  1. Before surgery, shave the entire right hind leg and apply a depilatory cream. After 5 min, remove the cream and clean the leg with water. Expose the implants and all surgical instruments to a disinfecting solution (e.g., 96% alcohol) or sterilize them (steam sterilization,130 °C, 25 min).
  2. Under aseptic conditions, place the mouse in the supine position on the small animal operation table. Bend the right knee to allow for an anterior approach to the condyles of the knee. Perform a 5 mm medial parapatellar incision at the right knee using the scalpel blade.
  3. Lift the patellar ligament with the fine forceps and mobilize the ligament carefully with the scalpel blade. Then, shift the patella laterally with the scalpel blade to expose the intercondylar notch of the femur.
  4. Open the intercondylar notch by drilling until the intramedullary cavity is reached.
    1. Start drilling with a 45º offset to the femur axis using the 1 mm centering drill bit. Slowly change the direction of the drill bit during drilling until it parallels the bone axis of the femur. Stop drilling if the intramedullary cavity is reached.
  5. After opening the bone at the intercondylar notch, insert the 24 G needle into the intramedullary cavity over the whole length of the femur. Ream the intramedullary cavity of the femur manually through rotary motions of the 24 G needle. Remove the 24 G needle and insert the thinner 27 G needle into the intramedullary cavity. Push the needle forward to perforate the cortical bone of the femur proximally at the greater trochanter.
  6. Remove the 27 G needle from the femur. Using the hand drill, implant the intramedullary nail through the intercondylar notch under continuous rotation and axial pressure until the distal end of the nail reaches the level of the condyles.
    NOTE: The distal end of the nail can be identified with a small mark.
  7. Place the mouse in the left lateral position. Perform a longitudinal skin incision using the scalpel blade along the diaphyseal part of the lateral femur from the knee joint to the hip joint in order to surgically expose the midshaft of the femur.
  8. Using small preparation scissors, split the fascia and spread the muscles in the direction of the femur axis from the lateral side. Spread the muscles until the diaphyseal part of the femur is exposed. Preserve the sciatic nerve.
    1. Prepare the whole circumference of the femur by undermining the bone with the dressing forceps. Then, retract the muscles by spreading the dressing forceps and expose the femur.
  9. Mount the aiming device to the distal end of the nail. Advance the device until it attaches to the adapter flange of the nail and turn the aiming device in anterolateral position to the femur.
  10. Interlock the nail with a proximal and a distal interlocking pin.
    1. Start with the proximal interlocking pin.
    2. Insert the centering drill bit (1 mm diameter) into the hand drill. Countersink the bone at the proximal interlocking hole position.
      NOTE: By countersinking, a small cavity is created in the facing cortical bone without drilling through the bone. This cavity allows for improved centering and guiding of the thinner drill bit (0.3 mm diameter), used later.
    3. Insert the drill bit (0.3 mm diameter) into the hand drill. Using the aiming device, drill the hole through both the facing and the averted cortical bone (bicortical). Insert the first interlocking pin through the aiming device. The interlocking pin drive shaft shears off as soon as the interlocking torque is achieved.
    4. Repeat this procedure for the distal interlocking pin.
  11. Perform the diaphyseal osteotomy.
    1. Attach the saw guide to the aiming device on the lateral side between the two interlocking pins. Then, saw the bone with the Gigli saw under continuous irrigation with saline. After the osteotomy is completed, cut the saw at one end, close to the bone. Remove the saw carefully to avoid causing damage to the soft tissue.
  12. Remove the aiming device and, with the small pincers, clip off the remaining shaft of the intramedullary nail at the marked line.
  13. Close the muscle layers at the lateral site of the femur and perform the skin closure with single sutures. At the anterior site of the knee, reposition the patella and fix the patella tendon to the muscles with one single suture. Use single sutures to close this wound as well.
  14. Keep the animals under the heat lamp until they recover from anesthesia. Do not leave the animals unattended until they have regained sufficient consciousness to maintain ventral recumbency. Return the animals to single cages in the animal facility. 
  15. Monitor the animals carefully every day. Maintain postoperative analgesia during the first three days. Continue analgesia if, on day 4 after surgery, the animals still show evidence of pain, as indicated by vocalization, restlessness, lack of mobility, failure to groom, abnormal posture, and lack of normal interest in surroundings. Terminate analgesia when the animals are pain free.

An Intramedullary Locking Nail for Standardized Fixation of Femur Osteotomies to Analyze Normal and Defective Bone Healing in Mice

Learning Objectives

The overall time for the surgical procedure was about 30 min from skin incision to wound closure. Using the surgical implants provided, surgery can be performed without a stereo-microscope. Postoperatively, the animals were monitored daily. Post-operative analgesia was terminated after 3 days because none of the animals showed evidence of pain (vocalization, restlessness, lack of mobility, failure to groom, abnormal posture, or lack of normal interest in surroundings) after this time period. The animals showed normal weight-bearing within 2 days after surgery. Wound infection or secondary fractures were not observed during the entire observation period.

The most important complication that can occur is the incorrect implantation of the locking nail, with the protrusion of the nail level with the condyles of the knee joint (Figure 3 A). This mainly occurs due to incorrect handling of the aiming device or due to the use of an animal with a too-small femur, particularly in mice with body weights below 20 g. Another complication is the dislocation of an interlocking pin (Figure 3 B). This complication can be avoided by radiographic confirmation of correct implant placement during or immediately after surgery. This issue is mainly caused by incomplete insertion of the pin. Finally, bone harvest at the end of the experiment was impeded a few times because it was difficult to remove the interlocking pins. This was due to bony bridging around the pin position.

Radiological analyses after 5 weeks confirmed complete healing of the 0.25 mm osteotomy gap. At this time point, the periosteal callus was almost completely remodeled (Figure 4 A). In contrast, in femora stabilized with a 2.00 mm gap, the osteotomy was not healed. The femora reliably showed an atrophic non-union formation. This was also confirmed after 10 weeks of bone healing (Figure 4 B).

After stabilization with a 0.25 mm osteotomy gap, histological analyses revealed a typical pattern of secondary fracture healing with callus formation, including intramembranous and endochondral ossification. After 5 weeks, the osteotomy was completely bridged with osseous tissue. At this time point, woven bone was already remodeled into lamellar bone (Figure 5 A). In contrast, the femora stabilized with 2.00 mm osteotomy gaps showed atrophic non-union after 10 weeks of observation. This was associated with a high amount of fibrous tissue within the osteotomy gap. None of the osteotomies showed signs of bone healing or bridging when analyzed histologically (Figure 5 B).

Figure 1
Figure 1: Implants. A. Intramedullary nail (0.8 mm diameter, 15.7 mm length) with a proximal thread (arrow, 4 mm length) and two holes (arrow heads) for the insertion of the interlocking pins. The nail is connected to a shaft (double arrow) to facilitate application. B. Interlocking pin (0.3 mm diameter, arrow) to achieve rotational and axial stability. The interlocking pin is also connected to a shaft (double arrow) to facilitate application. C. Intramedullary nail after implantation into a mouse femur. Please click here to view a larger version of this figure.

Figure 2
Figure 2: Surgical instruments for nail implantation. A. Aiming device for the insertion of the nail. B. Saw guide to be used for the creation of the osteotomy with a gap size of 0.25 mm. C. Drill bit for drilling the hole for the interlocking pins. D. Centering drill bit for countersinking of the interlocking pin holes. E. Hand drill used for the insertion of the nail, the countersinking, the hole drilling, and the insertion of the interlocking pins. Please click here to view a larger version of this figure.

Figure 3
Figure 3: Postoperative radiographs. A. Radiograph demonstrating a protrusion (arrow) of the nail into the knee joint at the level of the condyles. B. Radiograph demonstrating an incomplete insertion of the proximal interlocking pin (arrow). Scale bars represent 4 mm.

Figure 4
Figure 4: Radiographs after 5 and 10 weeks of bone healing. A. Radiographic analysis of a femur stabilized with a 0.25 mm osteotomy gap after 5 weeks, demonstrating adequate bone healing. B. Radiographic analysis of a femur stabilized with a 2.00 mm osteotomy gap after 10 weeks, demonstrating atrophic non-union. Scale bars represent 4 mm.

Figure 5
Figure 5: Histological sections after 5 and 10 weeks of bone healing. A. Histological analysis of a femur stabilized with a 0.25 mm osteotomy gap after 5 weeks, demonstrating adequate bone healing. Note the almost-complete remodeling with lamellar bone. B. Histological analysis of a femur stabilized with a 2.00 mm osteotomy gap after 10 weeks, demonstrating atrophic non-union. Note the fibrous tissue in the osteotomy gap. The histological sections were stained according to the trichrome method. Scale bars represent 800 µm.

Figure 6
Figure 6: Bone substitute implantation. In vivo photograph demonstrating a segmental bone defect in the right femur of a mouse. The defect is filled by a bone substitute (arrow). The bone substitute is implanted over the nail, providing adequate positioning and fixation.

List of Materials

MouseNail RISystem AG 221,122
MouseNail aiming device RISystem AG 221,201
MouseNail interlocking pin RISystem AG 221,121
Centering bit RISystem AG 592,205
Drill bit RISystem AG 590,200
Gigli wire saw RISystem AG 590,100
Suture (5-0 Prolene) Ethicon 8614H
Forceps Braun Aesculap AG &CoKG  BD520R
Dressing forceps Braun Aesculap AG &CoKG  BJ009R
Scissors Braun Aesculap AG &CoKG  BC100R
Needle holder Braun Aesculap AG &CoKG  BM024R
24G needle BD Mircolance 3 304100
27G needle Braun Melsungen AG 9186182
Scalpel blade size 15 Braun Aesculap AG &CoKG  16600525
Pincers Knipex 7932125
Heat radiator Sanitas 605.25
Depilatory cream Asid bonz GmbH                NDXZ10
Eye lubricant Bayer Vital GmbH 2182442
Xylazine Bayer Vital GmbH 1320422
Ketamine Serumwerke Bernburg 7005294
Tramadol Grünenthal GmbH 2256241
Disinfection solution (SoftaseptN) Braun Melsungen AG 8505018
CD-1 mice Charles River 22

Lab Prep

Bone healing models are essential to the development of new therapeutic strategies for clinical fracture treatment. Furthermore, mouse models are becoming more commonly used in trauma research. They offer a large number of mutant strains and antibodies for the analysis of the molecular mechanisms behind the highly differentiated process of bone healing. To control the biomechanical environment, standardized and well-characterized osteosynthesis techniques are mandatory in mice. Here, we report on the design and use of an intramedullary nail to stabilize open femur osteotomies in mice. The nail, made of medical-grade stainless steel, provides high axial and rotational stiffness. The implant further allows the creation of defined, constant osteotomy gap sizes from 0.00 mm to 2.00 mm. Intramedullary locking nail stabilization of femur osteotomies with gap sizes of 0.00 mm and 0.25 mm result in adequate bone healing through endochondral and intramembranous ossification. Stabilization of femur osteotomies with a gap size of 2.00 mm results in atrophic non-union. Thus, the intramedullary locking nail can be used in healing and non-healing models. A further advantage of the use of the nail compared to other open bone healing models is the possibility to adequately fix bone substitutes and scaffolds in order to study the process of osseous integration. A disadvantage of the use of the intramedullary nail is the more invasive surgical procedure, inherent to all open procedures compared to closed models. A further disadvantage may be the induction of some damage to the intramedullary cavity, inherent to all intramedullary stabilization techniques compared to extramedullary stabilization procedures.

Bone healing models are essential to the development of new therapeutic strategies for clinical fracture treatment. Furthermore, mouse models are becoming more commonly used in trauma research. They offer a large number of mutant strains and antibodies for the analysis of the molecular mechanisms behind the highly differentiated process of bone healing. To control the biomechanical environment, standardized and well-characterized osteosynthesis techniques are mandatory in mice. Here, we report on the design and use of an intramedullary nail to stabilize open femur osteotomies in mice. The nail, made of medical-grade stainless steel, provides high axial and rotational stiffness. The implant further allows the creation of defined, constant osteotomy gap sizes from 0.00 mm to 2.00 mm. Intramedullary locking nail stabilization of femur osteotomies with gap sizes of 0.00 mm and 0.25 mm result in adequate bone healing through endochondral and intramembranous ossification. Stabilization of femur osteotomies with a gap size of 2.00 mm results in atrophic non-union. Thus, the intramedullary locking nail can be used in healing and non-healing models. A further advantage of the use of the nail compared to other open bone healing models is the possibility to adequately fix bone substitutes and scaffolds in order to study the process of osseous integration. A disadvantage of the use of the intramedullary nail is the more invasive surgical procedure, inherent to all open procedures compared to closed models. A further disadvantage may be the induction of some damage to the intramedullary cavity, inherent to all intramedullary stabilization techniques compared to extramedullary stabilization procedures.

Procedure

Bone healing models are essential to the development of new therapeutic strategies for clinical fracture treatment. Furthermore, mouse models are becoming more commonly used in trauma research. They offer a large number of mutant strains and antibodies for the analysis of the molecular mechanisms behind the highly differentiated process of bone healing. To control the biomechanical environment, standardized and well-characterized osteosynthesis techniques are mandatory in mice. Here, we report on the design and use of an intramedullary nail to stabilize open femur osteotomies in mice. The nail, made of medical-grade stainless steel, provides high axial and rotational stiffness. The implant further allows the creation of defined, constant osteotomy gap sizes from 0.00 mm to 2.00 mm. Intramedullary locking nail stabilization of femur osteotomies with gap sizes of 0.00 mm and 0.25 mm result in adequate bone healing through endochondral and intramembranous ossification. Stabilization of femur osteotomies with a gap size of 2.00 mm results in atrophic non-union. Thus, the intramedullary locking nail can be used in healing and non-healing models. A further advantage of the use of the nail compared to other open bone healing models is the possibility to adequately fix bone substitutes and scaffolds in order to study the process of osseous integration. A disadvantage of the use of the intramedullary nail is the more invasive surgical procedure, inherent to all open procedures compared to closed models. A further disadvantage may be the induction of some damage to the intramedullary cavity, inherent to all intramedullary stabilization techniques compared to extramedullary stabilization procedures.

Tags