Waiting
登录处理中...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education
结构工程

需要订阅 JoVE 才能查看此 内容. 登录或开始免费试用。

 
Click here for the English version

硬化混凝土的拉伸试验

Overview

资料来源: 布莱克斯堡弗吉尼亚理工大学土木与环境工程系罗伯特. 里昂

在以前的实验室中, 重点讨论混凝土的压缩, 我们观察到混凝土可以承受很大的应力在单轴压缩力。然而, 观测到的故障不是压缩故障, 而是沿剪切面出现最大拉力的故障。因此, 重要的是要了解混凝土在紧张的行为, 特别是它的最大强度, 这将支配其终极和服务行为。从最终的观点来看, 张力和剪切应力的组合会导致开裂和立即和灾难性的失败。因此, 在结构应用中, 混凝土很少被用于无加固条件;大多数混凝土构件将用钢加固, 这样裂缝就可以停止, 裂缝宽度也会受到限制。后者从适用性的角度来说很重要, 因为控制裂缝宽度和分布是耐久性的关键, 因为这将阻碍除冰盐和类似的化学物质穿透和腐蚀钢筋。

本试验的目的是: (1) 进行拉伸劈裂柱试验, 确定混凝土抗拉强度, (2) 进行梁试验确定混凝土抗拉强度, (3) 说明钢筋对行为通过比较轻的增强梁的行为与未加筋的。

Principles

像混凝土这样的脆性复合材料的拉伸能力 (ft) 通常在其压缩能力的1/10 范围内 (f ' c)。这种行为是由一个非常薄弱的层的存在驱动的, 称为界面过渡区 (界面), 在砂浆和骨料之间。这个非常薄的层 (只有大约40微米左右) 含有较少的中未水化水泥和钙硅酸盐水合物 (c-S h) 比砂浆, 但更大的定向氢氧化钙 (c h) 以及 trisulfate 水合物 (或钙矾石, 长针状结构)。这两个因素都导致了这个层内的孔隙度的增大, 从而降低了强度。此外, 事实上, 总粒子之间的平均间距仅为界面厚度的2到2.5 倍, 这意味着大量的砂浆, 由一些估计高达 40%, 是由这种较弱的材料组成。

混凝土的脆性行为是由聚合体和砂浆之间的应力集中引起的微裂纹的生长驱动的。从概念上讲, 在理想的圆形骨料颗粒周围的应力状态是如何被应用的?当压缩试图在粒子周围 "流动", 力向量变得倾斜时, 拉伸力在水平方向上发展。由于应力集中, 这些力在界面上更高。大拉力和弱界面的结合导致了这一地区的优先开裂。

随着圆筒试验中压缩应力的增加, 这些裂缝开始随着横向拉伸应力、存在的初始微裂纹和弱界面的存在而增大和传播。随着混凝土的最大强度的增加, 裂缝的增长将变得不稳定, 随着裂缝的快速传播, 混凝土将松散地保持强度的能力。这导致混凝土的整体脆性行为, 以及许多类似的陶瓷材料与弱界面区。

混凝土的低抗拉强度也使得直接拉伸试验很难进行, 因为传统的拉伸试样往往由于应力集中而在手柄上失效。围绕这个问题的一个优雅的解决方案是测试他们身边的气缸。此方法称为拆分气缸或巴西测试。在这项试验中, 当你离开加载头, 那里有一个复杂的应力状态, 一个统一的水平拉应力场将发展。由于混凝土在张力较弱, 这将导致垂直裂缝和分裂的圆筒。从统计研究中, 预计劈裂缸试验将给出 6√f ' c '的拉伸能力。

另一种间接的测试混凝土张力的方法是在四点弯曲试验配置中使用短梁试样。梁的中心部分在恒定力矩和零切变下, 通过弹性理论原理, 可以推导出梁的破坏荷载、几何性质和抗拉强度之间的简单关系。在底部出现裂纹时, 光束会突然失效, 并且没有残余强度。虽然众所周知, 在失败的情况下, 混凝土梁的深度分布并不完全遵循弹性理论, 这种不一致通常被认为对最终结果影响不大。从统计研究中, 光束拉伸试验预计会给出 7.5√f ' c '的拉伸能力。

在混凝土梁试验中观察到的突然和脆性破坏在任何实际应用中都是不可接受的, 在这种情况下, 需要进行至少重力载荷的延性和残余强度。在梁的底部 (或拉伸侧) 加钢筋以防止这种突然的故障;当混凝土开始开裂时, 钢将开始占去拉力。只要有表面变形帮助他们从混凝土中转移力量的钢筋, 这种技术就能有效地锚定。如果像在这里测试的短光束, 这将通过在条形末端提供一个钩子来完成。此外, 由于斜剪裂纹可能发生在梁的中深附近, 一般提供垂直箍筋。最后, 由于钢筋混凝土结构的不确定性质, 很难确切地知道在某一组荷载作用下, 梁的张力和压缩情况。由于这个原因, 酒吧也将被放置在顶部, 导致典型的钢笼, 在大多数梁在钢筋混凝土结构中看到。

Subscription Required. Please recommend JoVE to your librarian.

Procedure

1. 劈裂拉力试验

  1. 对于本测试, 请使用以前准备好的取样气缸 (参见朱庇特视频"对新鲜混凝土的测试")。获得两条轻木或类似物 (约 1/8"厚 x 1"宽 x 8'长), 以帮助分配在钢瓶上的负载。
  2. 测量两个气缸的尺寸。沿着试样平分圆柱的每个端的直径绘制一条线。
  3. 中心沿试验机下部轴承座中心一条。
  4. 将气缸放在带上, 使试样两端标记的线条垂直并居中在带上。
  5. 将第二条纵向放在气缸上。
  6. 将测试机的上装头降低, 直到机器上的组件固定。
  7. 估计试样所能承担的最大载荷, 假定抗拉强度为 6f 'c , 其中f'c是名义混凝土抗压强度。
  8. 缓慢地应用压缩负载 (大约 100 psi 到 200 psi 每分钟), 直到试样在分裂张力中失效。
  9. 记录最大应用负载。
  10. 检查断口表面, 并估计已破裂的骨料的百分比。

2. 光束张力测试

  1. 构造一个混凝土梁, 4 英寸 x 4 在. 横断面和 36 in. 长度。
  2. 在试验机上安装4点弯曲试验装置。
  3. 小心地提起光束并安装到测试设置中。
  4. 打开测试机, 激活软件以读取负载和变形。
  5. 估计试样所能承担的最大载荷, 假定抗拉强度为 7.5f'c , 并将压缩载荷缓慢地施加 (大约 100 psi 到 200 psi 每分钟), 直到试样失效。
  6. 记录最大应用负载。
  7. 检查断口表面, 并估计已破裂的骨料的百分比。

3. 增强梁试验

  1. 构造一束混凝土梁, 用两个 #3 条 (直径3/8 英寸) 加固, 位于底部约0.5。条形有钩在两端, 以防止酒吧拔出失败。光束是4英寸 x 4 英寸的横截面, 36 英寸的不受支持的长度。
  2. 在试验机上安装4点弯曲试验装置。
  3. 小心地提起光束并安装到测试设置中。
  4. 打开测试机, 激活软件以读取负载和变形。
  5. 估计试样所能承担的最大载荷, 假定抗拉强度为 7.5f'c , 并将压缩载荷缓慢地施加 (大约 100 psi 到 200 psi 每分钟), 直到试样失效。
  6. 随着测试的进展, 记录应用的负载和变形。

钢筋混凝土比未加固混凝土具有更强的强度, 因为钢筋在钢筋混凝土截面上可用于承载较大的拉力, 这将在实验室试验中得到证明。

混凝土在单轴压缩力下能承受很大的应力。然而, 观测到的故障并非在性质上是压缩的, 而是沿剪切面出现最大拉力的情况下的故障。这种突然的失效类型在结构应用中是不能接受的, 大多数混凝土都是用钢加固的, 以增加其强度和延性。

在实际应用中, 钢筋被添加到钢笼模式中, 以跨越潜在的拉伸破坏面。钢筋的作用是限制裂缝的形成和裂缝宽度, 增加结构的寿命。除冰盐和其他化学物质阻碍了对钢筋的穿透和腐蚀。保持结构构件刚度, 减少长期挠度, 改善混凝土结构的美观性。

在这段视频中, 我们将进行测试, 以确定混凝土抗拉强度和比较钢筋混凝土加固。

在混凝土中, 砂浆与骨料之间非常薄、薄弱的层, 称为界面过渡区, 导致极低的抗拉强度。由于普通混凝土的设计是由于需要最大限度地提高骨料含量和减少砂浆体积, 颗粒间距很小, 多达40% 的砂浆体积由较弱的界面材料组成。在界面区混合硬化过程中, 局部、大、水对水泥的配比导致界面晶体结构较弱。这种情况下, 加上不规则骨料颗粒周围的应力集中, 导致了这一地区的优先裂纹扩展。

为了测试混凝土的拉伸性能, 经常使用一种称为劈裂圆筒试验的方法。施加压缩力会导致均匀的水平拉伸应力, 在远离施加载荷的位置。

在拉伸和抗压强度之间通常会出现相关性, 尽管这些关系的典型变化系数很高。使用的另一种方法是四点弯曲测试配置。在这个测试中, 顶部纤维是在压缩和底部一个, 在紧张。当拉伸强度达到底部时, 裂纹形式会导致立即失效。

该试验还能看出拉伸强度和抗压强度的相似关系。梁试验结果预测的拉伸能力, 一般30至50% 大于劈裂拉力试验。但是由于许多混凝土构件的开裂是由于弯曲引起的, 梁试验的数值通常用于设计。为了比较未加固的钢筋混凝土, 钢筋被放置在梁的底部拉伸侧, 然后进行测试。

在下一节中, 我们将用劈裂拉伸试验测量未加筋混凝土的抗拉强度, 并利用梁拉力试验比较未加固混凝土和钢筋混凝土的抗拉强度。

对于这些测试, 请使用我们的视频中准备的样品气缸讨论新的混凝土。使用轻木和硬钢筋的薄条, 以帮助在压缩试验机的圆柱形加载头上均匀分配负载。在试样的每一端沿直径画一条线, 平分圆筒。其次, 将一条木带和硬钢筋沿试验机下部轴承座的中心。

现在, 把气缸放在带上, 使标记在试样两端的线条垂直并居中在带上。下一步, 将第二个木条和钢筋纵向放在气缸顶部。然后, 将测试机的上装头降低, 直到机器上的组件固定。

缓慢连续地应用压缩载荷, 直到试样在劈裂张力中失效。最后, 记录最大应用负载。检查断口表面, 并估计已破裂的骨料的百分比。重复这个过程的第二个气缸, 以了解变化的想法。

构造两个混凝土梁, 一个没有加固, 一个加筋与2号三酒吧位于约0.5 英寸从底部。条形图两端有钩, 以防止拉拔失败。两个横梁是4英寸4英寸的横截面, 16 英寸的不受支持的长度。

小心地提起混凝土梁并安装到安装中。然后在试验机上安装四点弯曲试验装置, 如下所示。测试被称为四点弯曲测试, 因为我们有两个支持在两端和两个负载点在第三个点。

打开测试机, 激活软件以读取负载和变形。然后, 缓慢而连续地应用压缩载荷, 直到试样失效。记录最大应用负载。最后, 检查断口表面并估计已破裂的骨料的百分比。

对钢筋混凝土梁重复相同的协议。在这种情况下, 钢筋在底部或拉伸一侧的梁, 防止突然脆性故障。当混凝土开始开裂时, 钢将开始占去拉力。这项技术的工作只要钢筋, 其中有表面变形, 以帮助他们从混凝土转移的力量, 是正确的锚定。

计算在劈裂拉伸试验期间达到的最大压缩载荷的拉伸强度。对于这些测试, 平均值为 388 psi, 标准偏差为 22.2 psi。

计算梁拉伸试验期间达到的最大压缩载荷的拉伸强度。对于这些测试, 平均值为 522.9 psi。通过对钢筋砼梁的荷载挠度曲线进行对比, 可以比较未加筋混凝土的结构。

最初, 两个光束沿着一条相似的路径, 初始刚度稍有差异, 可能是由于支撑条件的变化。当初始开裂发生在大约450磅的负荷上时, 未加筋的光束就失效了, 这是接近预测抗拉强度的载荷。加筋梁在较高的载荷下开裂, 但其强度很快恢复, 尽管整体刚度较低。负载持续增加, 直到钢开始屈服后, 曲线开始平坦。由于钢是非常韧性和应变硬化, 失败发生在大变形。

两条曲线的比较表明了在性能上的显著差异。强度的差别很大, 但应该注意的是, 这与使用钢材的面积有关。

既然你很欣赏混凝土中钢筋的需要, 让我们看看一些常见的应用。在混凝土截面面积上使用1到1.5% 钢, 可以使混凝土结构经济、安全、提供良好的维修性。许多足球场, 例如芝加哥的士兵场, 都欠他们独特的钢筋混凝土造型。

弗兰克. 劳埃德·怀特为现代建筑的世界带来了钢筋砼。赖特利用其在不受支持的悬臂中保持其完整性的能力, 在他的一些最伟大的著作中使用了这些材料, 包括宾夕法尼亚州的流水别墅。

你刚刚看了朱庇特的介绍在紧张硬化混凝土的压缩试验。你现在应该了解混凝土中的拉伸破坏的脆性性质, 并知道在张力下确定未加筋混凝土和钢筋混凝土强度的标准实验室试验。

谢谢收看!

Subscription Required. Please recommend JoVE to your librarian.

Results

在劈裂拉伸试验过程中达到的最大压缩载荷的抗拉强度由以下公式给出:
ft = 2 pmax/(πDL)
其中 D 为直径 (英寸), L 为长度 (英寸), Pmax 是拉伸试验期间达到的最大压缩载荷 (磅)。对于这些测试, 平均值为 388 psi, 标准偏差为 22.2 psi (表 1)。

测试 Equation 1psi P (磅) Equation 2psi Equation 3
1 4780 18456 367.17 5.31
2 4780 20678 411.38 5.95
3 4780 19385 385.65 5.58
平均 = 388.07 5.61
圣开发。 22.20 0.32

表1。劈裂拉伸试验结果。

通过以下公式给出了在梁拉伸试验期间达到的最大压缩载荷的拉伸强度:
ft = P最大L/(bd2)
其中 d 为深度 (英寸), b 为宽度, L 为长度 (英寸), Pmax是拉伸试验期间达到的最大压缩载荷 (磅)。对于在第三点应用负载的情况, 此公式有效。对于这些测试, 平均值为 522.9 psi (表 2)。

测试 Equation 1psi P (磅) Equation 2psi Equation 3
1 4780 2675 501。6 7。3
2 4780 2903 544。3 7。9
平均 = 522。9 7。6
圣开发。 30.23 0.44

表2。结果进行了光束拉伸试验。

未加筋混凝土梁的荷载挠度曲线如1 所示。未加筋梁最初可能遵循相同的加载路径, 但一旦发生初始开裂, 就失败了。当初始开裂发生时, 加筋件出现轻微的不连续现象, 当它在开裂的情况下又开始回升时, 刚度略低。当曲线开始平坦时, 负载持续增加直到混凝土开始屈服。但是, 由于钢是非常韧性和应变硬化, 负载将继续轻微增加, 失败将发生在非常大的变形时, 混凝土顶部粉碎。

Figure 1
图 1: 在 (a) 小荷载和 (b) 大载荷 (全曲线) 的无筋 (蓝色) 和增强 (红色) 混凝土梁的荷载挠度曲线的比较。

Subscription Required. Please recommend JoVE to your librarian.

Applications and Summary

试验表明, 混凝土的拉伸破坏具有脆性性质, 且抗拉强度仅为抗压强度的1/8 至1/12。这种类型的脆性失效可能会对人类安全造成灾难性后果, 因此所有混凝土结构都需要用钢 (或类似的) 钢筋加固以获得拉力。对未加筋梁的荷载-变形曲线进行比较, 不仅表明后者具有较大的强度, 而且具有较大的变形能力。

混凝土结构的安全和长期性能的关键是在高拉伸和剪切应力的地区提供钢筋。一般而言, 达到这个目标所需的钢材量很小, 按混凝土截面面积的 1%-1.5% 计算。这一小部分意味着混凝土结构可以经济, 安全, 并提供良好的可维护性。此外, 将混凝土投射到任何理想形式的能力给建筑师在开发美观美观的结构上有很大的回旋余地。

Subscription Required. Please recommend JoVE to your librarian.

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

Tags

空值、问题、

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter