Summary

使用基于多元醇的技术微波辅助萃取用于化妆品应用的酚类化合物和抗氧化剂

Published: August 23, 2024
doi:

Summary

该协议详细介绍了利用基于多元醇的微波辅助提取方法提取酚类化合物和天然抗氧化剂,代表了开发即用型提取物的实用且环境可持续的方法。

Abstract

利用多元醇作为绿色溶剂从植物材料中提取生物活性化合物,由于其安全性和与植物生物活性化学品的惰性行为而受到关注。本研究探讨了使用微波辅助萃取 (MAE) 方法和基于多元醇的溶剂(甘油、丙二醇 (PG)、丁二醇 (BG)、甲基丙二醇 (MPD)、异戊二醇 (IPD)、戊二醇、1,2-己二醇和己二醇 (HG) 的微波辅助萃取 (MAE) 方法从咖啡银皮中可持续提取酚类化合物和天然抗氧化剂。对常规和非常规溶剂萃取进行了比较分析,重点关注它们对 MAE 生物活性化合物的影响,包括总酚含量 (TPC)、总类黄酮含量 (TFC) 和抗氧化活性等参数,如 1,1-二苯基-2-三硝基苯肼自由基清除测定 (DPPH)、2,2′-联氮基-双(-3-乙基苯并噻唑啉-6-磺酸)自由基清除测定 (ABTS) 和铁还原抗氧化能力测定 (FRAP)。观察到 1,2-己二醇水溶液萃取的 TPC(52.0 ± 3.0 mg GAE/g 样品)、1,2-己二醇水溶液萃取的 TFC(20.0 ± 1.7 mg QE/g 样品)、HG 水溶液萃取的 DPPH(13.6 ± 0.3 mg TE/g 样品)、戊二醇水溶液萃取的 ABTS(8.2 ± 0.1 mg TE/g 样品)和 HG 水溶液萃取的 FRAP(21.1 ± 1.3 mg Fe (II) E/g 样品)。本研究旨在通过天然植物成分推进环保提取技术,通过最大限度地减少有害化学品的使用来促进可持续性,同时减少时间和能源消耗,在化妆品中具有潜在应用。

Introduction

如今,美容行业的环保意识呈全球趋势,导致制造商专注于使用可持续替代品提取植物成分的绿色技术1。通常,乙醇、甲醇和己烷等传统溶剂用于提取植物酚类成分和天然抗氧化剂2。然而,植物提取物中存在的溶剂残留物对人类健康构成潜在风险,会引起皮肤和眼睛刺激3,尤其是它们在化妆品中的预期应用。因此,从提取物中去除此类溶剂残留物具有挑战性,这一过程需要投入大量时间、精力和人力资源4。最近,过热水、离子液体、低共熔溶剂和生物衍生溶剂已成为绿色溶剂萃取的有前途的方法5。然而,它们的使用仍然受到水基工艺中产品分离的限制。为了应对这些挑战,开发即用型提取物成为一种可行的解决方案6

多元醇在化妆品配方中通常用作保湿剂,因为它们具有良好的极性和保持环境中水分的能力7。此外,甘油、丙二醇、丁二醇、甲基丙二醇、异戊二醇、戊二醇、戊二醇、1,2-己二醇和己二醇等多元醇可用于植物提取。它们被认为是无毒、可生物降解、环保、非反应性和安全的溶剂,可用于植物提取8。此外,由于多元醇的沸点和极性较高,可以承受微波辅助萃取 (MAE) 过程中产生的热量9。这些多元醇被美国食品和药物管理局 (FDA) 普遍认定为安全 (GRAS) 化学品。与乙醇或甲醇等传统溶剂不同,由于乙醇或甲醇的潜在有害影响,可能需要从提取物中严格去除,而多元醇的优势在于最大限度地减少与溶剂去除过程相关的能源、时间和成本10。这不仅简化了提取过程,还提高了提取方法的整体效率和可持续性。以前的研究使用丙二醇和丁二醇等多元醇作为溶剂从 山茶花 10 和咖啡浆11 中提取生物活性化合物,揭示了它们在植物提取过程中作为可持续替代溶剂的作用的巨大潜力。因此,多元醇-水溶剂系统的持续开发和优化有可能在绿色化学和可持续工业实践方面取得重大进步。

通常,在植物中发现的生物活性化合物是作为次生代谢产物合成的。这些化合物可分为三个主要组:萜烯和萜类化合物、生物碱和酚类化合物12。在不同条件下使用各种提取方法来从植物中分离特定的生物活性化合物。植物材料中的生物活性化合物可以使用常规或非常规技术提取。传统方法包括浸渍、回流萃取和水蒸馏,而非常规方法包括超声辅助萃取、酶辅助萃取、微波辅助萃取 (MAE)、脉冲电场辅助萃取、超临界流体萃取和加压液体萃取13。这些非常规方法旨在通过使用更安全的溶剂和助剂、提高能源效率、防止生物活性成分降解和减少环境污染来提高安全性14

此外,MAE 是从植物中提取生物活性化合物的复杂绿色技术之一。传统的提取程序需要大量的时间、能源和高温,随着时间的推移,这可能会降解热敏性生物活性化合物13。与传统的热萃取相比,MAE 通过在样品内产生局部加热、破坏细胞结构并增强传质来促进生物活性化合物的提取,从而提高化合物提取的效率。热量通过微波从植物细胞内部传递,微波作用于植物成分内的水分子13。此外,MAE 在改进活性化合物的提取和分离、提高产品产量、提高提取效率、减少化学品需求方面取得了进展,节省了时间和能源,同时防止了生物活性化合物的破坏15

本研究的重点是使用不同类型的多元醇作为溶剂,通过微波辅助萃取 (MAE) 提取植物酚类化合物和天然抗氧化剂。测定多元醇基 MAE 提取物的总酚含量 (TPC)、总类黄酮含量 (TFC) 和抗氧化活性 (DPPH、ABTS 和 FRAP)。此外,将基于多元醇的 MAE 与使用常规溶剂(如水和乙醇)的 MAE 进行了比较。这项研究有望为天然成分的环境可持续提取技术的发展做出贡献,通过减少对危险化学品的依赖、缩短加工时间以及最大限度地减少原材料生产中的能源消耗来促进可持续性,以用于化妆品行业的潜在应用。

Protocol

本研究中使用的试剂和设备的详细信息列在 材料表中。 1. 实验准备 植物样品制备收集新鲜的咖啡银皮(阿拉比卡咖啡),并在60°C下在托盘干燥机中干燥72小时11。 使用研磨机将干燥的咖啡银皮 (CS) 研磨成细粉,并在室温下储存以供进一步分析11。注意:在这项研究中,新鲜的 CS …

Representative Results

多元醇溶剂和常规溶剂对总酚含量、总类黄酮含量、DPPH、FRAP 和 ABTS 抗氧化剂测定的影响溶剂极性应与目标活性分子的极性相容,以提高植物中生物活性物质的提取效率22。使用各种溶剂(水、乙醇、甘油、丙二醇、丁二醇、甲基丙二醇、异戊二醇、戊二醇、1,2-己二醇和己二醇)进行实验,以评估它们对 MAE 咖啡银皮提取物的生物活性化合物和抗氧化活性的影响?…

Discussion

各种因素在 MAE 的成功实施中起着至关重要的作用,例如植物成分的植物化学含量、提取时间、温度、微波功率、固液比和溶剂浓度13。植物通常表现出不同种类的植物化学物质;因此,选择富含抗氧化剂和酚类化合物的天然植物是必不可少的23.此外,不同的生物活性成分根据所使用的溶剂表现出不同的极性。同样,溶剂也表现出不同的极性。鉴于溶剂的极性在?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究由 Mae Fah Luang 大学资助。作者要感谢皇太后大学茶叶和咖啡研究所促进研究人员与当地农民之间关于获取咖啡银皮样品的联系。

Materials

1,2-Hexanediol Chanjao Longevity Co., Ltd.
2,2 -Azino-bis 3 ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS) Sigma A1888
2,2-Diphenyl-1-picrylhydrazyl (DPPH) Sigma D9132
2,4,6-Tri(2-pyridyl)-s-triazine (TPTZ) Sigma 93285
2-Digital balance Ohaus Pioneer
4-Digital balance Denver SI-234
6-hydroxy-2,5,7,8 tetramethylchroman -2-carboxylic acid (Trolox) Sigma 238813
96-well plate SPL Life Science
Absolute ethanol RCI Labscan 64175
Acetic acid RCI Labscan 64197
Aluminum chloride Loba Chemie 898
Automatic pipette Labnet Biopett
Butylene glycol Chanjao Longevity Co., Ltd.
Ethos X advanced microwave extraction Milestone Srl, Sorisole, Italy
Ferrous sulfate Ajex Finechem 3850
Folin-Ciocalteu's reagent Loba Chemie 3870
Freezer SF Sanyo C697(GYN)
Gallic acid Sigma 398225
Grinder Ou Hardware Products Co.,Ltd
Hexylene glycol Chanjao Longevity Co., Ltd.
Hydrochloric acid (37%) RCI Labscan AR1107
Iron (III) chloride Loba Chemie 3820
Isopentyldiol Chanjao Longevity Co., Ltd.
Methanol RCI Labscan 67561
Methylpropanediol  Chanjao Longevity Co., Ltd.
Pentylene glycol Chanjao Longevity Co., Ltd.
Potassium persulfate Loba Chemie 5420
Propylene glycol Chanjao Longevity Co., Ltd.
Quercetin Sigma Q4951
Refrigerated centrifuge Hettich
Sodium acetate Loba Chemie 5758
Sodium carbonate Loba Chemie 5810
Sodium hydroxide RCI Labscan AR1325
Sodium nitrite Loba Chemie 5954
SPECTROstar Nano microplate reader BMG- LABTECH
SPSS software IBM SPSS Statistics 20
Tray dryer France Etuves XUE343

References

  1. Wawoczny, A., Gillner, D. The most potent natural pharmaceuticals, cosmetics, and food ingredients isolated from plants with deep eutectic solvents. J Agric Food Chem. 71 (29), 10877-10900 (2023).
  2. Syukur, M., Prahasiwi, M. S., Yuliani, S., Purwaningsih, Y., Indriyanti, E. Profiling of active compounds of extract ethanol, n-hexane, ethyl acetate and fraction ethanol of star anise (Illicium verum hook. F.) and determination of total flavonoids, total phenolics and their potential as antioxidants. Sci Technol Indones. 8 (2), 219-226 (2023).
  3. Supjaroenporn, C., Khongcharoen, P., Myo, H., Khat-Udomkiri, N. Studying the optimization, characterization, and antioxidant activities of phenolic extracts extracted from Rhus chinensis Mill. Leaf using microwave-assisted extraction system with glycerol as a green solvent. Curr Bioact Compd. 20 (3), 68-82 (2024).
  4. Gasser, M. S., Abdel Rahman, R. O. Sustainability of solvent extraction techniques in pollution prevention and control. Handbook of advanced approaches towards pollution prevention and control. , 33-66 (2021).
  5. Płotka-Wasylka, J., Rutkowska, M., Owczarek, K., Tobiszewski, M., Namieśnik, J. Extraction with environmentally friendly solvents. TrAC, Trends Anal Chem. 91, 12-25 (2017).
  6. Queffelec, J., Beraud, W., Torres, M. D., Domínguez, H. Advances in obtaining ready-to-use extracts with natural solvents. Sustain Chem Pharm. 38, 101478 (2024).
  7. Can Karaca, A., Erdem, I. G., Ak, M. M. Effects of polyols on gelation kinetics, gel hardness, and drying properties of alginates subjected to internal gelation. LWT. 92, 297-303 (2018).
  8. Nastasi, J. R., Daygon, V. D., Kontogiorgos, V., Fitzgerald, M. A. Qualitative analysis of polyphenols in glycerol plant extracts using untargeted metabolomics. Metabolites. 13 (4), 566 (2023).
  9. Khat-Udomkiri, N., Gatnawa, G., Boonlerd, N., Myo, H. Valorization of Camellia sinensis flowers in cosmetic and pharmaceutical applications: Optimization of microwave-assisted glycerin extraction. Waste Biomass Valori. 15, 323-335 (2023).
  10. Myo, H., Yaowiwat, N., Pongkorpsakol, P., Aonbangkhen, C., Khat-Udomkiri, N. Butylene glycol used as a sustainable solvent for extracting bioactive compounds from Camellia sinensis flowers with ultrasound-assisted extraction. ACS omega. 8 (5), 4976-4987 (2023).
  11. Myo, H., Khat-Udomkiri, N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrason Sonochem. 89, 106127 (2022).
  12. Twaij, B. M., Hasan, M. N. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. Int J Plant Biol. 13 (1), 4-14 (2022).
  13. Bitwell, C., Sen, I. S., Luke, C., Kakoma, M. K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 19, e01585 (2023).
  14. Chakrabortty, S., Kumar, A., Patruni, K., Singh, V., et al. . Recent advances in food biotechnology. , 353-370 (2022).
  15. Fan, L., et al. Mechanochemical assisted extraction as a green approach in preparation of bioactive components extraction from natural products – A review. Trends Food Sci Technol. 129, 98-110 (2022).
  16. Bessada, S. M., C Alves, R., Pp Oliveira, M. B. Coffee silverskin: A review on potential cosmetic applications. Cosmetics. 5 (1), 5 (2018).
  17. Myo, H., Nantarat, N., Khat-Udomkiri, N. Changes in bioactive compounds of coffee pulp through fermentation-based biotransformation using Lactobacillus plantarum TISTR 543 and its antioxidant activities. Fermentation. 7 (4), 292 (2021).
  18. Molole, G. J., Gure, A., Abdissa, N. Determination of total phenolic content and antioxidant activity of Commiphora mollis (oliv). Engl. Resin. BMC Chem. 16 (1), 48 (2022).
  19. Barku, V., Opoku-Boahen, Y., Owusu-Ansah, E., Mensah, E. Antioxidant activity and the estimation of total phenolic and flavonoid contents of the root extract of Amaranthus spinosus. Asian J Plant Sci Res. 3 (1), 69-74 (2013).
  20. Samarasiri, M., Chandrasiri, T., Wijesinghe, D., Gunawardena, S. Antioxidant capacity and total phenolic content variations against Morinda citrifolia L. fruit juice production methods. Int J Food Eng. 5, 293-299 (2019).
  21. Rumpf, J., Burger, R., Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int J Biol Macromol. 233, 123470 (2023).
  22. Lainez-Cerón, E., Ramírez-Corona, N., Jiménez-Munguía, M. T., Palou, E., López-Malo, A. Extraction of bioactive compounds from plants by means of new environmentally friendly solvents. Research and technological advances in food science. , 301-332 (2022).
  23. Yu, M., Gouvinhas, I., Rocha, J., Barros, A. I. R. N. A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci Rep. 11 (1), 10041 (2021).
  24. Lefebvre, T., Destandau, E., Lesellier, E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J Chromatogr A. 1635, 461770 (2021).
  25. Nandasiri, R., Eskin, N. M., Thiyam-Höllander, U. Antioxidative polyphenols of canola meal extracted by high pressure: Impact of temperature and solvents. J Food Sci. 84 (11), 3117-3128 (2019).
  26. Jha, A. K., Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci Technol. 119, 579-591 (2022).
  27. Czarnecki, M. A., et al. Solvent effect on the competition between weak and strong interactions in phenol solutions studied by near-infrared spectroscopy and DFT calculations. Phys Chem Chem Phys. 23 (35), 19188-19194 (2021).
  28. Lu, W., Mackie, C. J., Xu, B., Head-Gordon, M., Ahmed, M. A computational and experimental view of hydrogen bonding in glycerol water clusters. J Phys Chem A. 126 (10), 1701-1710 (2022).
  29. Fan, C., Liu, Y., Sebbah, T., Cao, X. A theoretical study on terpene-based natural deep eutectic solvent: Relationship between viscosity and hydrogen-bonding interactions. Glob Chall. 5 (3), 2000103 (2021).
  30. Liese, S., Schlaich, A., Netz, R. R. Dielectric constant of aqueous solutions of proteins and organic polymers from molecular dynamics simulations. J Chem Phys. 156 (22), 224903 (2022).
  31. Noreland, E., Gestblom, B., Sjöblom, J. Dielectric relaxation studies of 1-hexanol and 1, 2-hexanediol in heptane. J Solution Chem. 18, 303-312 (1989).
  32. Wohlfarth, C. Permittivity (dielectric constant) of liquids. CRC Handbook of Chemistry and Physics. 6, (1994).
  33. Dean, J. R. . Extraction techniques for environmental analysis. , (2022).
  34. Nour, A. H., Oluwaseun, A. R., Nour, A. H., Omer, M. S., Ahmed, N. Microwave-assisted extraction of bioactive compounds. Microwave heating. Electromagnetic fields causing thermal and non-thermal effects. , 1-31 (2021).
  35. David, F., Ochiai, N., Sandra, P. Stir bar sorptive extraction: A versatile, sensitive and robust technique for targeted and untargeted analyses. Evolution of solid-phase microextraction technology. , (2023).
  36. López-Fernández, O., et al. Determination of polyphenols using liquid chromatography-tandem mass spectrometry technique (LC-MS/MS): A review. Antioxidants. 9 (6), 479 (2020).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Myat Win, S., Saelee, M., Myo, H., Khat-Udomkiri, N. Microwave-Assisted Extraction of Phenolic Compounds and Antioxidants for Cosmetic Applications Using Polyol-Based Technology. J. Vis. Exp. (210), e67033, doi:10.3791/67033 (2024).

View Video