Um método raramente usado de registro eletrofisiológico, o registro de base, permite a análise de características da codificação do sabor que não podem ser examinadas pelos métodos convencionais de registro. O registro de base também permite a análise das respostas gustativas a estímulos hidrofóbicos que não podem ser estudados usando métodos eletrofisiológicos tradicionais.
Os insetos saboreiam o mundo externo através de pêlos gustativos, ou sensilas, que têm poros nas pontas. Quando um sensillum entra em contato com uma fonte potencial de alimento, os compostos da fonte de alimento entram pelo poro e ativam os neurônios internos. Por mais de 50 anos, essas respostas foram registradas usando uma técnica chamada registro de pontas. No entanto, esse método tem grandes limitações, incluindo a incapacidade de medir a atividade neural antes ou depois do contato com o estímulo e a exigência de que os saborizantes sejam solúveis em soluções aquosas. Descrevemos aqui uma técnica que chamamos de gravação de base, que supera essas limitações. O registro de base permite a medição da atividade dos neurônios gustativos antes, durante e depois do estímulo. Assim, permite uma análise extensiva das respostas OFF que ocorrem após um estímulo gustativo. Pode ser usado para estudar compostos hidrofóbicos, como feromônios de cadeia longa, que têm solubilidade muito baixa em água. Em resumo, o registro de base oferece as vantagens da eletrofisiologia de sentido único como meio de medir a atividade neuronal – alta resolução espacial e temporal, sem a necessidade de ferramentas genéticas – e supera as principais limitações da técnica tradicional de registro de pontas.
Os insetos, incluindo as moscas drosofilídeos, são dotados de um sofisticado sistema gustativo que lhes permite extrair informações químicas complexas do ambiente. Esse sistema permite discernir a composição química de várias substâncias, distinguindo entre as nutritivas e as nocivas 1,2.
No centro desse sistema estão estruturas especializadas conhecidas como pêlos gustativos ou sensilas, estrategicamente localizadas em várias partes do corpo. Nas moscas drosofilídeos, essas sensilas estão localizadas no labelo, que é o principal órgão gustativo da cabeça da mosca 1,2,3,4, bem como nas pernas e asas 1,2,5,6. O labelo está localizado na ponta da tromba e contém dois lobos 4,7,8. Cada lóbulo é coberto com 31 sensilas gustativas categorizadas como curtas, longas e intermediárias 4,7,8. Cada uma dessas sensilas abriga 2-4 neurônios gustativos 1,2,9,10. Esses neurônios gustativos expressam membros de pelo menos quatro famílias de genes diferentes, a saber, os genes do receptor gustativo (Gr), receptor ionotrópico (Ir), batedor de carteira (Ppk) e potencial receptor transitório (Trp) 1,2,11,12,13. Essa diversidade de receptores e canais equipa os insetos com a capacidade de reconhecer uma ampla gama de compostos químicos, incluindo pistas não voláteis e voláteis 1,2,14.
Por mais de 50 anos, os cientistas quantificaram a resposta dos neurônios gustativos e seus receptores usando uma técnica chamada registro de ponta 3,4,6,8,13,15,16,17,18,19,20,21,22,23,24 ,25,26,27,28,
29,30,31,32,33,34,35. No entanto, esse método tem grandes limitações. Primeiro, a atividade neural pode ser medida apenas durante o contato com o estímulo, e não antes ou depois do contato. Essa limitação impede a medição da atividade espontânea de pico e impede a medição das respostas OFF. Em segundo lugar, apenas os saborizantes solúveis em soluções aquosas podem ser testados.
Essas limitações podem ser superadas por uma técnica eletrofisiológica alternativa raramente usada chamada “registro de base”. Aqui descrevemos essa técnica, que adaptamos de um método usado por Marion-Poll e colegas24, e mostramos os recursos cruciais de codificação de sabor que agora podem ser convenientemente medidos14.
Em gravações de alguns tipos de sensilas, pode ser um desafio diferenciar os picos de diferentes neurônios. Por exemplo, os neurônios de açúcar e os neurônios mecanossensoriais das sensilas S e I produzem picos de amplitudes semelhantes, dificultando a distinção 4,14. Descobrimos que o uso de um eletrodo de gravação de tungstênio muito afiado reduz o disparo do neurônio mecanossensorial, assim como a colocação criteriosa do eletrodo de gravação. …
The authors have nothing to disclose.
Agradecemos a Zina Berman pelo apoio, a Lisa Baik pelos comentários sobre o manuscrito e a outros membros do laboratório Carlson pela discussão. Este trabalho foi apoiado pela concessão K01 do NIH DC020145 para HKMD; e o NIH concede R01 DC02174, R01 DC04729 e R01 DC011697 para J.R.C.
Microscope | Olympus | BX51WI | equipped with a 50X objective (LMPLFLN 50X, Olympus) and 10X eyepieces. |
Antivibration Table | TMC | 63-7590E | |
motorized Micromanipulators | Harvard Apparatus and Märzhäuser Micromanipulators | Micromanipulator PM 10 Piezo Micromanipulator | |
manual Micromanipulators | Märzhäuser Micromanipulators | MM33 Micromanipulator | |
Magnetic stands | ENCO | Model #625-0930 | |
Reference and recording Electrode Holder | Ockenfels Syntech GmbH | ||
Stimulus glass capillary Holder | Ockenfels Syntech GmbH | ||
Universal Single Ended Probe | Ockenfels Syntech GmbH | ||
4-CHANNEL USB ACQUISITION CONTROLLER , IDAC-4 | Ockenfels Syntech GmbH | ||
Stimulus Controllers | Ockenfels Syntech GmbH | Stimulus Controller CS 55 | |
Personal Computer | Dell | Vostro | Check for compatibility with digital acquisition system and software |
Tungsten Rod | A-M Systems | Cat#716000 | |
Aluminum Foil and/or Faraday Cage | Electromagnetic noise shielding | ||
Borosilicate Glass Capillaries | World Precision Instruments | 1B100F-4 | |
Pipette Puller | Sutter Instrument Company | Model P-97 Flaming/Brown Micropipette Puller | |
Stereomicroscope | Olympus | VMZ 1x-4x | For fly preparation |
p200 Pipette Tips | Generic | ||
Microloader tips | Eppendorf | E5242956003 | |
1 ml Syringe | Generic | ||
Crocodile clips | |||
Power Transformers | STACO ENERGY PRODUCTS | STACO 3PN221B | Assembled from P1000 pipette tips, flexible plastic tubing, and mesh |
Modeling Clay | Generic | ||
Forceps | Generic | ||
Plastic Tubing | Saint Gobain | Tygon S3™ E-3603 | |
Standard culture vials | Archon Scientific | Narrow 1-oz polystyrene vails, each with 10 mL of glucose medium, preloaded with cellulose acetate plugs | |
Berberine chloride (BER) | Sigma-Aldrich | Cat# Y0001149 | |
Denatonium benzoate (DEN) | Sigma-Aldrich | Cat# D5765 | |
N,N-Diethyl-m- toluamide (DEET) | Sigma-Aldrich | Cat# 36542 |