This protocol provides a rapid and size-specific isolation method for small extracellular vesicles by optimizing the size of the air spray nozzle, sheath fluid pressure, sample flow pressure, voltage, gain, and triggering threshold parameters.
Small extracellular vesicles (sEV) can be released from all cell types and carry protein, DNA, and RNA. Signaling molecules serve as indicators of the physiological and pathological state of a cell. However, there is no standard method for sEV isolation, which prevents downstream biomarker identification and drug intervention studies. In this article, we provide a detailed protocol for the isolation and purification of 50-200 nm sEV by a flow cell sorter. For this, a 50 µm nozzle and 80 psi sheath fluid pressure were selected to obtain a good sorting rate and stable side stream. Standard sized polystyrene microspheres were used to locate populations of 100, 200, and 300 nm particles. With additional optimization of the voltage, gain, and forward scatter (FSC) triggering threshold, the sEV signal could be separated from the background noise. These optimizations provide a panel of critical sort settings that enables one to obtain a representative population of sEV using FSC vs. side scatter (SSC) only. The flow cytometry-based isolation method not only allows for high-throughput analysis but also allows for synchronous classification or proteome analysis of sEV based on the biomarker expression, opening numerous downstream research applications.
A cell releases extracellular vesicles (EVs) of varying sizes that result in signaling molecules and membrane inclusions, which are important for intercellular communication1. EVs of different sizes also play different biological roles, with 50-200 nm sEV being able to precisely distribute RNA, DNA, and proteins to the correct extracellular location. The sEV also helps determine their secretion mechanisms, involving not only the regulation of normal physiological processes such as immune surveillance, stem cell maintenance, blood coagulation, and tissue repair but also the pathology underlying several diseases such as tumor progression and metastasis2,3. Effective isolation and analysis of sEV are critical for identifying biomarkers and designing future drug interventions.
With continuous research on the clinical application of sEV, the isolation methods of sEV have put forward higher requirements. Due to the heterogeneity of sEV in size, source, and contents, as well as their similarity with other EVs in physicochemical and biochemical properties, there is no standard method for sEV isolation4,5. Currently, ultracentrifugation, size exclusion chromatography (SEC), polymer precipitation, and immunoaffinity capture are the most common sEV isolation methods6. Ultracentrifugation is still the gold standard for sEV isolation in research, despite being time-consuming, resulting in low purity with a wide size distribution of 40-500 nm and significant mechanical damage to the sEV after long-term centrifugation7,8,9. Polymer precipitation, which usually uses polyethylene glycol (PEG), suffers from unacceptable purity for subsequent functional analysis with concomitant precipitation of extracellular protein aggregates and polymer contamination10,11. Immunoaffinity capture-based methods require high-cost antibodies with varying specificity, as well as have problems with low processing volume and yields12,13,14. Particle size is one of the main indicators to evaluate the purity of isolated sEV. Although sEV purity remains an unattainable goal, SEC removes a considerable quantity of medium components, and the sEV particles extracted by the SEC method are mainly in the range of 50-200 nm15. The existing techniques have a few disadvantages, including but not limited to being time-consuming, low purity, low yield, poor reproducibility, low throughput of samples, and potential damage of sEV, which makes it incompatible with clinical utilization16. Thus, a rapid, inexpensive, and size-specified sEV isolation method applicable to diverse biofluids is an essential need in several research and clinical situations.
In flow cytometry, single particles are analyzed in a high-throughput, multiparametric manner, and subsets are sorted out17. Due to the heterogeneity of EVs, a single-particle flow cytometric measurement would be ideal, which has been used to investigate EVs following the paradigms of cell analysis, with light scatter and fluorescence labels being used to identify physiology-related features and protein components18,19,20. Nevertheless, conventional flow cytometry is challenged by the small size of sEV and low abundance of surface biomarkers. The sensitivity of flow cytometry could be improved by optimizing detection parameters to distinguish background noise and sEV regardless of using forward scatter (FSC), side scatter (SSC), or fluorescence threshold triggering parameter19.
With the present protocol, high-resolution flow cytometric sort settings were optimized using fluorescent beads as standard. By selecting the proper nozzle size, sheath fluid pressure, threshold triggering parameter, and voltages controlling scattered light intensities, we were able to isolate a specific subset of sEV from a complex mixture.
1. Cell culture
2. Culture medium collection
3. Cell sorting
4. Isolation of sEV
The flow chart diagram for the experimental protocol is shown in Figure 1. In this method, standard sized polystyrene microspheres were used as reference standards for particle size distribution. Under the specific instrumental parameter condition, the particle signal could be clearly distinguished from the background noise in the FSC vs. SSC plot using the logarithmic form. Gating strategies are shown in Figure 2. R4, R5, and R6 refer to the positions of 100 nm, 200 nm, and 300 nm microspheres, respectively. R7 is the detection limit of electronic noise below 50 nm, and R8 is the position range of 50-200 nm particles.
The particle size distribution of the EVs mixture derived from PANC-1 cells was in the wide range of 40-400 nm after ultracentrifugation (Figure 3). To isolate and purify the 50-200 nm sEV, flow cytometric sorting was performed to obtain the specific size sEV according to the location of standard microspheres (Figure 4). The quality of isolation was verified by NTA, and it was found that the particle size range of sEV after sorting was between 50-200 nm (as shown in Figure 5). The presence of sEV was further observed by TEM, indicated by red arrows in Figure 6A, and the isolated sEVs were confirmed to contain markers of CD9, CD63, and CD81 by WB analysis (Figure 6B).
Figure 1. Flow chart diagram for the experimental protocol. PANC-1 cell culture medium was collected and ultracentrifuged to obtain the EVs mixture. Sorting parameters were optimized for isolation and purification of 50-200 nm sEV which was verified by NTA. Please click here to view a larger version of this figure.
Figure 2. Flow cytometry analysis of standard-sized polystyrene microspheres to locate the 50-200 nm size range in the FSC vs. SSC plot. Diluted suspensions of 100 nm, 200 nm, and 300 nm microspheres were loaded and analyzed by a flow cytometer as shown in the FSC vs. SSC dot plot. R4, R5, and R6 refer to the positions of 100 nm, 200 nm, and 300 nm particles, respectively. R7 is the electronic noise as the detection limit for 50 nm particles, and R8 represents the position range of 50-200 nm particles. Please click here to view a larger version of this figure.
Figure 3. NTA analysis of particle size distribution of EVs obtained by ultracentrifugation. The frequency distribution of different particle sizes is represented by the data as particle percentage vs. size. Please click here to view a larger version of this figure.
Figure 4. Flow cytometry analysis of the collected EV sample. The FSC vs. SSC dot plot shows a sample of the collected EV mixture loaded and analyzed by a flow cytometer. The sEV in the size range of 50-200 nm within the R8 region were sorted. Please click here to view a larger version of this figure.
Figure 5. Verification of particle size distribution of sEV after sorting using NTA. Representative particle percentage vs. size histogram shows the size distribution of the sorted sEV. Please click here to view a larger version of this figure.
Figure 6. Characterization of sEV isolated by sorting. (A) A representative TEM image of sorted sEV (indicated by red arrows). Scale bar = 200 nm. (B) Western blot analysis of CD9, CD81, and CD63 markers in the sorted sEV. Please click here to view a larger version of this figure.
This protocol outlines an optimized method to isolate and purify sEV with the specified particle size of 50-200 nm using a flow cell sorter, which was validated by NTA. The method solved the bottleneck problem of obtaining sEV with uniform particle size and high purity, avoiding interference from unrelated biological molecules wrapped in large-sized EVs22. Fast, high-throughput analyses are possible with flow cytometry, which can capture 100,000 particles per second and make 70,000 sorting decisions per second17, greatly reducing the time and reflecting the heterogeneity of sEV particles. Moreover, this flow cytometry-based protocol can be customized based on individual interests in subpopulations of EVs of specific sizes. Alternative gate ranges can be used to identify and isolate the populations of interest with the same instrument parameters set as the above, such as air spray nozzle, sheath fluid pressure, sample flow pressure, and triggering threshold parameter.
The technical difficulty of this method lies in the separation of populations with different size ranges, particularly distinguishing from background noise. We identified a panel of critical sort settings. First, the size of the nozzle affects the sorting rate. In order to improve the concentration of sEV obtained by sorting, a 50 µm nozzle is used in this method, and 80 psi of sheath fluid pressure is required to stabilize the side stream. With higher sheath fluid pressure, drop frequencies increase, resulting in higher event rates and shorter sorting time23. However, increasing sheath fluid pressure attenuates the sensitivity of FSC and fluorescence signals due to the reduced time it takes to pass through the laser and the number of photons reaching the detector24. Notably, it is difficult to maintain the stability of the side stream under this pressure, which requires high cleanliness of the nozzle and pipeline. Second, ultrasonic cleaning of the nozzle and flushing of flow cytometry pipes are strongly recommended to increase the likelihood of experimental success. Lastly, voltage and gain are critical for population separation, especially for small size particles. Here, a voltage of 250 V and gain of 0.6 can effectively separate the sEV at 50-200 nm with FSC triggering and plot in logarithmic form.
One caveat of the approach is that in some cases, the concentration of the sEV is too high, or the sEV aggregate, during the sorting process, making it difficult to achieve a single-particle suspension. The aggregated sEV will be discarded due to the over-amplified signal.
Collectively, with the advantages of high-throughput analysis of flow cytometry, this method optimized nozzle size, sheath fluid pressure, sample flow pressure, and triggering threshold parameter leading to successful isolation of 50-200 nm sEV. Besides, not only does this method allow for the separation of specific size particles, but it also allows for synchronous classification or proteome analysis of sEV based on antigen expression, opening up numerous downstream research applications.
The authors have nothing to disclose.
This work was supported by the Scientific Research Fund of Zhejiang Chinese Medicine University (2020ZG29), the Basic Public Welfare Research Project of Zhejiang Province (LGF19H150006, LTGY23B070001), the Project of Zhejiang Provincial Department of Education (Y202147028) and the Project of Experimental Technology of Zhejiang University Laboratory Department (SJS201712, SYB202130).
Centrifuge tube | Beckman Coulter | 344058 | |
Culture flasks | Corning | 430641 | |
Dulbecco’s modified eagle medium | Corning Cellgro | 10-013-CV | |
Fetal bovine serum | SUER | SUER050QY | |
Flow cell sorter | Beckman Coulter | Moflo Astrios EQ | |
Human pancreatic cancer cell, PANC-1 | NA | NA | PANC-1 cells were donated by Professor Weijun Yang, College of Life Sciences, Zhejiang University |
Laser particle size and zeta potential analyzer | Malvern | Zetasizer Nano ZS 90 | |
Phosphate buffer saline | Gibco | C20012500BT | |
Polystyrene fluorescent microspheres | Beckman Coulter | 6602336 | |
Transmission electron microscopy | JEOL | JEM-1200EX | |
Trypsin-EDTA solution | Gibco | 1713949 | |
Ultra rainbow fluorescent particles | Beckman Coulter | B28479 | |
Ultracentrifuge | Beckman Coulter | Optima-L80XP | |
Ultracentrifuge rotor | Beckman Coulter | SW32TI |